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Preface

These notes can be used for an introductory time series course where the
prerequisites are an understanding of linear regression and some basic probability
skills (expectation). It also assumes general math skills at the high school level
(trigonometry, complex numbers, polynomials, calculus, and so on).

• Various topics depend heavily on techniques from nonlinear regression.
Consequently, the reader should have a solid knowledge of linear regression
analysis, including multiple regression and weighted least squares. Some of
this material is reviewed briefly in Chapters 2 and 3.

• A calculus based course on probability is essential. Readers should be
familiar with most of the content of basic probability facts:
http://www.stat.pitt.edu/stoffer/tsa4/intro_prob.pdf.

• For readers who are a bit rusty on high school math skills, the WikiBook:
http://en.wikibooks.org/wiki/Subject:K-12_mathematics

may be useful. In particular, we mention the book covering calculus:
http://en.wikibooks.org/wiki/Calculus.
We occasionally use matrix notation. For readers lacking this skill, see the
high school page on matrices:
https://en.wikibooks.org/wiki/High_School_Mathematics_Extensions/

Matrices.
For Chapter 4, this primer on complex numbers:
http://tutorial.math.lamar.edu/pdf/Complex/ComplexNumbers.pdf

may be helpful.

All of the numerical examples were done using the freeware R statistical
package and the code is typically listed at the end of an example. Appendix R has
information regarding the use of R and the package used throughout, astsa. In
addition, there are several exercises that may help first time users get more
comfortable with the software.

Two stars (∗∗) indicate that skills obtained in a course on basic mathematical
statistics are recommended and these parts may be skipped. The references are
not listed here, but may be found in Shumway & Stoffer (2017) or earlier versions.

Internal links are dark red, external links are magenta, R code is in blue,
output is purple and comments are # green.

http://www.stat.pitt.edu/stoffer/tsa4/intro_prob.pdf
http://en.wikibooks.org/wiki/Subject:K-12_mathematics
http://en.wikibooks.org/wiki/Calculus
https://en.wikibooks.org/wiki/High_School_Mathematics_Extensions/Matrices
https://en.wikibooks.org/wiki/High_School_Mathematics_Extensions/Matrices
http://tutorial.math.lamar.edu/pdf/Complex/ComplexNumbers.pdf
http://www.stat.pitt.edu/stoffer/tsa4/
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Chapter 1
Time Series Characteristics

1.1 Introduction

The analysis of experimental data that have been observed at different points in
time leads to new and unique problems in statistical modeling and inference. The
obvious correlation introduced by the sampling of adjacent points in time can
severely restrict the applicability of the many conventional statistical methods
traditionally dependent on the assumption that these adjacent observations are
independent and identically distributed. The systematic approach by which one
goes about answering the mathematical and statistical questions posed by these
time correlations is commonly referred to as time series analysis.

Historically, time series methods were applied to problems in the physical and
environmental sciences. This fact accounts for the basic engineering flavor
permeating the language of time series analysis. In our view, the first step in any
time series investigation always involves careful scrutiny of the recorded data
plotted over time. Before looking more closely at the particular statistical
methods, it is appropriate to mention that two separate, but not necessarily
mutually exclusive, approaches to time series analysis exist, commonly identified
as the time domain approach (Chapter 3) and the frequency domain approach
(Chapter 4).

1.2 Some Time Series Data

The following examples illustrate some of the common kinds of time series data
as well as some of the statistical questions that might be asked about such data.

Example 1.1 Johnson & Johnson Quarterly Earnings
Figure 1.1 shows quarterly earnings per share for the U.S. company Johnson &
Johnson. There are 84 quarters (21 years) measured from the first quarter of
1960 to the last quarter of 1980. Modeling such series begins by observing the
primary patterns in the time history. In this case, note the increasing underlying
trend and variability, and a somewhat regular oscillation superimposed on the
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Fig. 1.1. Johnson & Johnson quarterly earnings per share, 1960-I to 1980-IV.
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Fig. 1.2. Left: Initial deposits of $100, $150, $200, then $75, in quarter 1, 2, 3, then 4, over 20
years, with an annual growth rate of 10%; xt = (1 + .10)xt−4. Right: Logs of the quarterly values;
log(xt) = log(1 + .10) + log(xt−4).

trend that seems to repeat over quarters. Methods for analyzing data such as
these are explored in Chapter 2 (see Problem 2.1) using regression techniques.
Also, compare Figure 1.1 with Figure 1.2.

To use package astsa, and then plot the data for this example using R, type
the following (try plotting the logged data yourself).
library(astsa) # ** SEE FOOTNOTE
tsplot(jj, type="o", ylab="Quarterly Earnings per Share")
tsplot(log(jj)) # not shown

Example 1.2 Global Warming
Consider the global temperature series record shown in Figure 1.3. The data are
the global mean land–ocean temperature index from 1880 to 2015, with the
base period 1951-1980. The values are deviations (◦C) from the 1951-1980
average, updated from Hansen et al. (2006). The upward trend in the series
during the latter part of the twentieth century has been used as an argument for
the climate change hypothesis. Note that the trend is not linear, with periods of
leveling off and then sharp upward trends. The question of interest is whether
the overall trend is natural or caused by some human-induced interface. The R
code for this example is:
tsplot(globtemp, type="o", ylab="Global Temperature Deviations")

** We assume that the R package astsa has been downloaded and installed. See Appendix R
(Section R.2.1) for further details.
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Fig. 1.3. Yearly average global temperature deviations (1880–2015) in ◦C.
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Fig. 1.4. The daily returns of the Dow Jones Industrial Average (DJIA) from April 20, 2006 to April
20, 2016.

Example 1.3 Dow Jones Industrial Average
As an example of financial time series data, Figure 1.4 shows the daily returns
(or percent change) of the Dow Jones Industrial Average (DJIA) from 2006 to
2016. It is easy to spot the financial crisis of 2008 in the figure. The data shown
in Figure 1.4 are typical of return data. The mean of the series appears to be
stable with an average return of approximately zero, however, the volatility (or
variability) of data exhibits clustering; that is, highly volatile periods tend to be
clustered together. A problem in the analysis of these type of financial data is to
forecast the volatility of future returns. Models have been developed to handle
these problems; see Chapter 5. The data were obtained using the Technical
Trading Rules (TTR) package to download the data from YahooTM and then
plot it. We then used the fact that if xt is the actual value of the DJIA and
rt = (xt − xt−1)/xt−1 is the return, then 1 + rt = xt/xt−1 and
log(1 + rt) = log(xt/xt−1) = log(xt)− log(xt−1) ≈ rt.1 The data set is
also provided in astsa but xts must be loaded.
# library(TTR)
# djia = getYahooData("^DJI", start=20060420, end=20160420, freq="daily")
library(xts)
djiar = diff(log(djia$Close))[-1] # approximate returns
plot(djiar, main="DJIA Returns", type="n")
lines(djiar)

1 log(1 + p) = p− p2

2 + p3

3 − · · · for −1 < p ≤ 1. If p is near zero, the higher-order terms in the
expansion are negligible.
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Fig. 1.5. Monthly SOI and Recruitment (estimated new fish), 1950-1987.

Example 1.4 El Niño and Fish Population
We may also be interested in analyzing several time series at once. Figure 1.5
shows monthly values of an environmental series called the Southern
Oscillation Index (SOI) and associated Recruitment (an index of the number of
new fish). Both series are for a period of 453 months ranging over the years
1950–1987. SOI measures changes in air pressure related to sea surface
temperatures in the central Pacific Ocean. The central Pacific warms every
three to seven years due to the El Niño effect, which has been blamed for
various global extreme weather events. The series show two basic oscillations
types, an obvious annual cycle (hot in the summer, cold in the winter), and a
slower frequency that seems to repeat about every 4 years. The study of the
kinds of cycles and their strengths is the subject of Chapter 4. The two series
are also related; it is easy to imagine the fish population is dependent on the
ocean temperature. The following R code will reproduce Figure 1.5:
par(mfrow = c(2,1)) # set up the graphics
tsplot(soi, ylab="", xlab="", main="Southern Oscillation Index")
tsplot(rec, ylab="", xlab="", main="Recruitment")

Example 1.5 fMRI Imaging
Often, time series are observed under varying experimental conditions or
treatment configurations. Such a set of series is shown in Figure 1.6, where data
are collected from various locations in the brain via functional magnetic
resonance imaging (fMRI). In this example, a stimulus was applied for 32
seconds and then stopped for 32 seconds; thus, the signal period is 64 seconds.
The sampling rate was one observation every 2 seconds for 256 seconds
(n = 128). The series are consecutive measures of blood oxygenation-level
dependent (bold) signal intensity, which measures areas of activation in the
brain. Notice that the periodicities appear strongly in the motor cortex series
and less strongly in the thalamus and cerebellum. The fact that one has series
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Fig. 1.6. fMRI data from various locations in the cortex, thalamus, and cerebellum; n = 128 points,
one observation taken every 2 seconds.

from different areas of the brain suggests testing whether the areas are
responding differently to the brush stimulus. Use the following R commands to
plot the data:
par(mfrow=c(2,1), mar=c(3,2,1,0)+.5, mgp=c(1.6,.6,0))
ts.plot(fmri1[,2:5], col=1:4, ylab="BOLD", xlab="", main="Cortex")
ts.plot(fmri1[,6:9], col=1:4, ylab="BOLD", xlab="", main="Thalam & Cereb")
mtext("Time (1 pt = 2 sec)", side=1, line=2)

1.3 Time Series Models

The primary objective of time series analysis is to develop mathematical models
that provide plausible descriptions for sample data, like that encountered in the
previous section.

The fundamental visual characteristic distinguishing the different series
shown in Example 1.1 – Example 1.5 is their differing degrees of smoothness. A
parsimonious explanation for this smoothness is that adjacent points in time are
correlated, so the value of the series at time t, say, xt, depends in some way on
the past values xt−1, xt−2, . . .. This idea expresses a fundamental way in which
we might think about generating realistic looking time series.

Example 1.6 White Noise (3 flavors)
A simple kind of generated series might be a collection of uncorrelated random
variables, wt, with mean 0 and finite variance σ2

w. The time series generated
from uncorrelated variables is used as a model for noise in engineering
applications where it is called white noise; we shall sometimes denote this
process as wt ∼ wn(0, σ2

w). The designation white originates from the analogy
with white light (details in Chapter 4).



10 1 Time Series Characteristics

white noise

Time

w

0 100 200 300 400 500

−
3

−
1

1
3

moving average

Time

v

0 100 200 300 400 500

−
3

−
1

1
2

3

Fig. 1.7. Gaussian white noise series (top) and three-point moving average of the Gaussian white noise
series (bottom).

We often require stronger conditions and need the noise to be independent
and identically distributed (iid) random variables with mean 0 and variance σ2

w.
We will distinguish this by saying white independent noise, or by writing
wt ∼ iid(0, σ2

w).
A particularly useful white noise series is Gaussian white noise, wherein

the wt are independent normal random variables, with mean 0 and variance σ2
w;

or more succinctly, wt ∼ iid N(0, σ2
w). Figure 1.7 shows in the upper panel a

collection of 500 such random variables, with σ2
w = 1, plotted in the order in

which they were drawn. The resulting series bears a resemblance to portions of
the DJIA returns in Figure 1.4.

If the stochastic behavior of all time series could be explained in terms of the
white noise model, classical statistical methods would suffice. Two ways of
introducing serial correlation and more smoothness into time series models are
given in Example 1.7 and Example 1.8.

Example 1.7 Moving Averages and Filtering
We might replace the white noise series wt by a moving average that smooths
the series. For example, consider replacing wt in Example 1.6 by an average of
its current value and its immediate neighbors in the past and future. That is, let

vt =
1
3
(
wt−1 + wt + wt+1

)
, (1.1)

which leads to the series shown in the lower panel of Figure 1.7. This series is
much smoother than the white noise series, and it is apparent that averaging
removes some of the high frequency behavior of the noise. We begin to notice a
similarity to some of the non-cyclic fMRI series in Figure 1.6.

To reproduce Figure 1.7 in R use the following commands. A linear
combination of values in a time series such as in (1.1) is referred to, generically,
as a filtered series; hence the command filter.
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Fig. 1.8. Autoregressive series generated from model (1.2).

w = rnorm(500,0,1) # 500 N(0,1) variates
v = filter(w, sides=2, rep(1/3,3)) # moving average
par(mfrow=c(2,1))
tsplot(w, main="white noise")
tsplot(v, ylim=c(-3,3), main="moving average")

The SOI and Recruitment series in Figure 1.5, as well as some of the fMRI
series in Figure 1.6, differ from the moving average series because they are
dominated by an oscillatory behavior. A number of methods exist for generating
series with this quasi-periodic behavior; we illustrate a popular one based on the
autoregressive model considered in Chapter 3.

Example 1.8 Autoregressions
Suppose we consider the white noise series wt of Example 1.6 as input and
calculate the output using the second-order equation

xt = xt−1 − .9xt−2 + wt (1.2)

successively for t = 1, 2, . . . , 500. The resulting output series is shown in
Figure 1.8. Equation (1.2) represents a regression or prediction of the current
value xt of a time series as a function of the past two values of the series, and,
hence, the term autoregression is suggested for this model. A problem with
startup values exists here because (1.2) also depends on the initial conditions x0
and x−1, but, for now, we assume that we are given these values and generate
the succeeding values by substituting into (1.2). That is, given
w1, w2, . . . , w500, and x0, x−1, we start with x1 = x0 − .9x−1 + w1, then
recursively compute x2 = x1 − .9x0 + w2, then x3 = x2 − .9x1 + w3, and so
on. We note the approximate periodic behavior of the series, which is similar to
that displayed by the SOI and Recruitment in Figure 1.5 and some fMRI series
in Figure 1.6. The autoregressive model above and its generalizations can be
used as an underlying model for many observed series and will be studied in
detail in Chapter 3.

One way to simulate and plot data from the model (1.2) in R is to use the
following commands (another way is to use arima.sim). The initial conditions
are set equal to zero, so we let the filter run an extra 50 values to avoid startup
problems.
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random walk

Time
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Fig. 1.9. Random walk, σw = 1, with drift δ = .2 (upper jagged line), without drift, δ = 0 (lower
jagged line), and dashed lines showing the drifts.

w = rnorm(550,0,1) # 50 extra to avoid startup problems
x = filter(w, filter=c(1,-.9), method="recursive")[-(1:50)]
tsplot(x, main="autoregression")

Example 1.9 RandomWalk with Drift
A model for analyzing trend such as seen in the global temperature data in
Figure 1.3, is the random walk with drift model given by

xt = δ + xt−1 + wt (1.3)

for t = 1, 2, . . ., with initial condition x0 = 0, and where wt is white noise. The
constant δ is called the drift, and when δ = 0, the model is called simply a
random walk because the value of the time series at time t is the value of the
series at time t− 1 plus a completely random movement determined by wt.
Note that we may rewrite (1.3) as a cumulative sum of white noise variates.
That is,

xt = δ t +
t

∑
j=1

wj (1.4)

for t = 1, 2, . . .; either use induction, or plug (1.4) into (1.3) to verify this
statement. Figure 1.9 shows 200 observations generated from the model with
δ = 0 and .2, and with standard normal nose. For comparison, we also
superimposed the straight lines δt on the graph.

To reproduce Figure 1.9 in R use the following code (notice the use of
multiple commands per line using a semicolon).
set.seed(154) # so you can reproduce the results
w = rnorm(200); x = cumsum(w) # two commands in one line
wd = w +.2; xd = cumsum(wd)
tsplot(xd, ylim=c(-5,55), main="random walk", ylab='')
abline(a=0, b=.2, lty=2) # drift
lines(x, col=4)
abline(h=0, col=4, lty=2)
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Fig. 1.10. Cosine wave with period 50 points (top panel) compared with the cosine wave contaminated
with additive white Gaussian noise, σw = 1 (middle panel) and σw = 5 (bottom panel); see (1.5).

Example 1.10 Signal in Noise
Many realistic models for generating time series assume an underlying signal
with some consistent periodic variation, contaminated by adding a random
noise. For example, it is easy to detect the regular cycle fMRI series displayed
on the top of Figure 1.6. Consider the model

xt = 2 cos(2π t+15
50 ) + wt (1.5)

for t = 1, 2, . . . , 500, where the first term is regarded as the signal, shown in the
upper panel of Figure 1.10. We note that a sinusoidal waveform can be written
as

A cos(2πωt + φ), (1.6)

where A is the amplitude, ω is the frequency of oscillation, and φ is a phase
shift. In (1.5), A = 2, ω = 1/50 (one cycle every 50 time points), and
φ = .6π.

An additive noise term was taken to be white noise with σw = 1 (middle
panel) and σw = 5 (bottom panel), drawn from a normal distribution. Adding
the two together obscures the signal, as shown in the lower panels of
Figure 1.10. Of course, the degree to which the signal is obscured depends on
the amplitude of the signal relative to the size of σw. The ratio of the amplitude
of the signal to σw (or some function of the ratio) is sometimes called the
signal-to-noise ratio (SNR); the larger the SNR, the easier it is to detect the
signal. Note that the signal is easily discernible in the middle panel, whereas
the signal is obscured in the bottom panel. Typically, we will not observe the
signal but the signal obscured by noise.

To reproduce Figure 1.10 in R, use the following commands:
cs = 2*cos(2*pi*1:500/50 + .6*pi)
w = rnorm(500,0,1)
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par(mfrow=c(3,1), mar=c(3,2,2,1), cex.main=1.5)
tsplot(cs, main=expression(2*cos(2*pi*t/50+.6*pi)))
tsplot(cs+w, main=expression(2*cos(2*pi*t/50+.6*pi) + N(0,1)))
tsplot(cs+5*w, main=expression(2*cos(2*pi*t/50+.6*pi) + N(0,5^2)))

1.4 Measures of Dependence

We now discuss various measures that describe the general behavior of a process
as it evolves over time. A rather simple descriptive measure is the mean function.

Definition 1.1 The mean function is defined as

µxt = E(xt) (1.7)

provided it exists, where E denotes the usual expected value operator.2 When no
confusion exists about which time series we are referring to, we will drop a
subscript and write µxt as µt.

Example 1.11 Mean Function of a Moving Average Series
If wt denotes a white noise series, then µwt = E(wt) = 0 for all t. The top
series in Figure 1.7 reflects this, as the series clearly fluctuates around a mean
value of zero. Smoothing the series as in Example 1.7 does not change the
mean because we can write

µvt = E(vt) =
1
3 [E(wt−1) + E(wt) + E(wt+1)] = 0.

Example 1.12 Mean Function of a RandomWalk with Drift
Consider the random walk with drift model given in (1.4),

xt = δ t +
t

∑
j=1

wj, t = 1, 2, . . . .

Because E(wt) = 0 for all t, and δ is a constant, we have

µxt = E(xt) = δ t +
t

∑
j=1

E(wj) = δ t

which is a straight line with slope δ. A realization of a random walk with drift
can be compared to its mean function in Figure 1.9.

2 Expectation is discussed in the third chapter of the basic probability facts pdf mentioned in the
preface. For continuous-valued finite variance processes, the mean is µt = E(xt) =

∫ ∞
−∞ x ft(x) dx

and the variance is σ2
t = E(xt − µt)2 =

∫ ∞
−∞(x− µt)2 ft(x) dx, where ft is the density of xt. If

xt is Gaussian with mean µt and variance σ2
t , abbreviated as xt ∼ N(µt, σ2

t ), the marginal density
is given by ft(x) = 1

σt
√

2π
exp

{
− 1

2σ2
t
(x− µt)2} for x ∈ R.

http://www.stat.pitt.edu/stoffer/tsa4/intro_prob.pdf
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Example 1.13 Mean Function of Signal Plus Noise
A great many practical applications depend on assuming the observed data have
been generated by a fixed signal waveform superimposed on a zero-mean noise
process, leading to an additive signal model of the form (1.5). It is clear,
because the signal in (1.5) is a fixed function of time, we will have

µxt = E
[
2 cos(2π t+15

50 ) + wt
]

= 2 cos(2π t+15
50 ) + E(wt)

= 2 cos(2π t+15
50 ),

and the mean function is just the cosine wave.

The mean function describes only the marginal behavior of a time series. The
lack of independence between two adjacent values xs and xt can be assessed
numerically, as in classical statistics, using the notions of covariance and
correlation. Assuming the variance of xt is finite, we have the following
definition.

Definition 1.2 The autocovariance function is defined as the second moment
product

γx(s, t) = cov(xs, xt) = E[(xs − µs)(xt − µt)], (1.8)

for all s and t. When no possible confusion exists about which time series we are
referring to, we will drop the subscript and write γx(s, t) as γ(s, t).

Note that γx(s, t) = γx(t, s) for all time points s and t. The autocovariance
measures the linear dependence between two points on the same series observed
at different times. Recall from classical statistics that if γx(s, t) = 0, then xs and
xt are not linearly related, but there still may be some dependence structure
between them. If, however, xs and xt are bivariate normal, γx(s, t) = 0 ensures
their independence. It is clear that, for s = t, the autocovariance reduces to the
(assumed finite) variance, because

γx(t, t) = E[(xt − µt)
2] = var(xt). (1.9)

Example 1.14 Autocovariance of White Noise
The white noise series wt has E(wt) = 0 and

γw(s, t) = cov(ws, wt) =

{
σ2

w s = t,
0 s 6= t.

(1.10)

A realization of white noise with σ2
w = 1 is shown in the top panel of Figure 1.7.

We often have to calculate the autocovariance between filtered series. A
useful result is given in the following proposition.
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Property 1.1 If the random variables

U =
m

∑
j=1

ajXj and V =
r

∑
k=1

bkYk

are linear filters of (finite variance) random variables {Xj} and {Yk},
respectively, then

cov(U, V) =
m

∑
j=1

r

∑
k=1

ajbkcov(Xj, Yk). (1.11)

Furthermore, var(U) = cov(U, U).

An easy way to remember (1.11) is to treat it like multiplication:

(a1X1 + a2X2)(b1Y1) = a1b1X1Y1 + a2b1X2Y1 .

Example 1.15 Autocovariance of a Moving Average
Consider applying a three-point moving average to the white noise series wt of
the previous example as in Example 1.7. In this case,

γv(s, t) = cov(vs, vt) = cov
{

1
3 (ws−1 + ws + ws+1) , 1

3 (wt−1 + wt + wt+1)
}

.

When s = t we have

γv(t, t) = 1
9 cov{(wt−1 + wt + wt+1), (wt−1 + wt + wt+1)}

= 1
9 [cov(wt−1, wt−1) + cov(wt, wt) + cov(wt+1, wt+1)]

= 3
9 σ2

w.

When s = t + 1,

γv(t + 1, t) = 1
9 cov{(wt + wt+1 + wt+2), (wt−1 + wt + wt+1)}

= 1
9 [cov(wt, wt) + cov(wt+1, wt+1)]

= 2
9 σ2

w,

using (1.10). Similar computations give γv(t− 1, t) = 2σ2
w/9,

γv(t + 2, t) = γv(t− 2, t) = σ2
w/9, and 0 when |t− s| > 2. We summarize

the values for all s and t as

γv(s, t) =


3
9 σ2

w s = t,
2
9 σ2

w |s− t| = 1,
1
9 σ2

w |s− t| = 2,

0 |s− t| > 2.

(1.12)

Example 1.15 shows clearly that the smoothing operation introduces a
covariance function that decreases as the separation between the two time points
increases and disappears completely when the time points are separated by three
or more time points. This particular autocovariance is interesting because it only
depends on the time separation or lag and not on the absolute location of the
points along the series. We shall see later that this dependence suggests a
mathematical model for the concept of weak stationarity.
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Example 1.16 Autocovariance of a RandomWalk
For the random walk model, xt = ∑t

j=1 wj, we have

γx(s, t) = cov(xs, xt) = cov

(
s

∑
j=1

wj,
t

∑
k=1

wk

)
= min{s, t} σ2

w ,

because the wt are uncorrelated random variables. For example, with s = 1 and
t = 2, cov(w1, w1 + w2) = cov(w1, w1) + cov(w1, w2) = σ2

w. Note that, as
opposed to the previous examples, the autocovariance function of a random
walk depends on the particular time values s and t, and not on the time
separation or lag. Also, notice that the variance of the random walk,
var(xt) = γx(t, t) = t σ2

w, increases without bound as time t increases. The
effect of this variance increase can be seen in Figure 1.9 where the processes
start to move away from their mean functions δ t (note that δ = 0 and .2 in that
example).

As in classical statistics, it is more convenient to deal with a measure of
association between −1 and 1, and this leads to the following definition.

Definition 1.3 The autocorrelation function (ACF) is defined as

ρ(s, t) =
γ(s, t)√

γ(s, s)γ(t, t)
. (1.13)

The ACF measures the linear predictability of the series at time t, say xt,
using only the value xs. We can show easily that −1 ≤ ρ(s, t) ≤ 1 using the
Cauchy–Schwarz inequality.3 If we can predict xt perfectly from xs through a
linear relationship, xt = β0 + β1xs, then the correlation will be +1 when
β1 > 0, and −1 when β1 < 0. Hence, we have a rough measure of the ability to
forecast the series at time t from the value at time s.

Often, we would like to measure the predictability of another series yt from
the series xs. Assuming both series have finite variances, we have the following
definition.

Definition 1.4 The cross-covariance function between two series, xt and yt, is

γxy(s, t) = cov(xs, yt) = E[(xs − µxs)(yt − µyt)]. (1.14)

The cross-covariance function can be scaled to live in [−1, 1]:

Definition 1.5 The cross-correlation function (CCF) is given by

ρxy(s, t) =
γxy(s, t)√

γx(s, s)γy(t, t)
. (1.15)

3 The Cauchy–Schwarz inequality implies |γ(s, t)|2 ≤ γ(s, s)γ(t, t).
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1.5 Stationary Time Series

The preceding definitions of the mean and autocovariance functions are
completely general. Although we have not made any special assumptions about
the behavior of the time series, many of the preceding examples have hinted that a
sort of regularity may exist over time in the behavior of a time series.

Definition 1.6 A strictly stationary time series is one for which the probabilistic
behavior of every collection of values and shifted values

{xt1 , xt2 , . . . , xtk} and {xt1+h, xt2+h, . . . , xtk+h} ,

are identical, for all k = 1, 2, ..., all time points t1, t2, . . . , tk, and all time shifts
h = 0,±1,±2, ... .

It is difficult to assess strict stationarity from data. Rather than imposing
conditions on all possible distributions of a time series, we will use a milder
version that imposes conditions only on the first two moments of the series.

Definition 1.7 A weakly stationary time series is a finite variance process where

(i) the mean value function, µt, defined in (1.7) is constant and does not depend
on time t, and

(ii) the autocovariance function, γ(s, t), defined in (1.8) depends on s and t only
through their difference |s− t|.

Henceforth, we will use the term stationary to mean weakly stationary; if a
process is stationary in the strict sense, we will use the term strictly stationary.

Stationarity requires regularity in the mean and autocorrelation functions so
that these quantities (at least) may be estimated by averaging. It should be clear
that a strictly stationary, finite variance, time series is also stationary. The
converse is not true in general. One important case where stationarity implies
strict stationarity is if the time series is Gaussian [meaning all finite collections of
the series are Gaussian].

Example 1.17 A RandomWalk is Not Stationary
A random walk is not stationary because its autocovariance function,
γ(s, t) = min{s, t}σ2

w, depends on time; see Example 1.16 and Problem 1.6.
Also, the random walk with drift violates both conditions of Definition 1.7
because, as shown in Example 1.12, the mean function, µxt = δt, is also a
function of time t.

Because the mean function, E(xt) = µt, of a stationary time series is
independent of time t, we will write

µt = µ. (1.16)

Also, because the autocovariance function, γ(s, t), of a stationary time series, xt,
depends on s and t only through their difference |s− t|, we may simplify the
notation. Let s = t + h, where h represents the time shift or lag. Then

γ(t + h, t) = cov(xt+h, xt) = cov(xh, x0) = γ(h, 0)
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Fig. 1.11. Autocovariance function of a three-point moving average.

because the time difference between times t + h and t is the same as the time
difference between times h and 0. Thus, the autocovariance function of a
stationary time series does not depend on the time argument t. Henceforth, for
convenience, we will drop the second argument of γ(h, 0).

Definition 1.8 The autocovariance function of a stationary time series will be
written as

γ(h) = cov(xt+h, xt) = E[(xt+h − µ)(xt − µ)]. (1.17)

Definition 1.9 The autocorrelation function (ACF) of a stationary time series
will be written using (1.13) as

ρ(h) =
γ(h)
γ(0)

. (1.18)

The Cauchy–Schwarz inequality shows again that −1 ≤ ρ(h) ≤ 1 for all h,
enabling one to assess the relative importance of a given autocorrelation value by
comparing with the extreme values −1 and 1.

Example 1.18 Stationarity of White Noise
The mean and autocovariance functions of the white noise series discussed in
Example 1.6 and Example 1.14 are easily evaluated as µwt = 0 and

γw(h) = cov(wt+h, wt) =

{
σ2

w h = 0,
0 h 6= 0.

Thus, white noise satisfies the conditions of Definition 1.7 and is weakly
stationary or stationary.

Example 1.19 Stationarity of a Moving Average
The three-point moving average process of Example 1.7 is stationary because,
from Example 1.11 and Example 1.15, the mean and autocovariance functions
µvt = 0, and

γv(h) =


3
9 σ2

w h = 0,
2
9 σ2

w h = ±1,
1
9 σ2

w h = ±2,
0 |h| > 2

are independent of time t, satisfying the conditions of Definition 1.7.



20 1 Time Series Characteristics

Note that the ACF is given by

ρv(h) =


1 h = 0,
2
3 h = ±1,
1
3 h = ±2,
0 |h| > 2

.

Figure 1.11 shows a plot of the autocorrelation as a function of lag h. Note that
the autocorrelation function is symmetric about lag zero.

Example 1.20 Trend Stationarity
For example, if xt = α + βt + yt, where yt is stationary, then the mean
function is µx,t = E(xt) = α + βt + µy, which is not independent of time.
Therefore, the process is not stationary. The autocovariance function, however,
is independent of time, because

γx(h) = cov(xt+h, xt) = E[(xt+h − µx,t+h)(xt − µx,t)]

= E[(yt+h − µy)(yt − µy)] = γy(h).

Thus, the model may be considered as having stationary behavior around a
linear trend; this behavior is sometimes called trend stationarity. An example of
such a process is the price of chicken series displayed in Figure 2.1.

The autocovariance function of a stationary process has several useful
properties. First, the value at h = 0, namely

γ(0) = E[(xt − µ)2] = var(xt). (1.19)

Also, the Cauchy–Schwarz inequality implies |γ(h)| ≤ γ(0). Another useful
property is that the autocovariance function of a stationary series is symmetric
around the origin,

γ(h) = γ(−h) (1.20)

for all h. This property follows because

γ(h) = γ((t + h)− t) = E[(xt+h − µ)(xt − µ)]

= E[(xt − µ)(xt+h − µ)] = γ(t− (t + h)) = γ(−h),

which shows how to use the notation as well as proving the result.
When several series are available, a notion of stationarity still applies with

additional conditions.

Definition 1.10 Two time series, say, xt and yt, are jointly stationary if they are
each stationary, and the cross-covariance function

γxy(h) = cov(xt+h, yt) = E[(xt+h − µx)(yt − µy)] (1.21)

is a function only of lag h.

Definition 1.11 The cross-correlation function (CCF) of jointly stationary time
series xt and yt is defined as

ρxy(h) =
γxy(h)√

γx(0)γy(0)
. (1.22)



1.5 Stationary Time Series 21

−15 −10 −5 0 5 10 15

0.
0

0.
5

1.
0

LAG

C
C

ov
F

x leadsy leads

y & x

Fig. 1.12. Demonstration of the results of Example 1.22 when ` = 5. The title indicates which series
is leading.

Again, we have the result −1 ≤ ρxy(h) ≤ 1 which enables comparison with
the extreme values −1 and 1 when looking at the relation between xt+h and yt.
The cross-correlation function is not generally symmetric about zero [i.e.,
typically ρxy(h) 6= ρxy(−h)]; however, it is the case that

ρxy(h) = ρyx(−h), (1.23)

which can be shown by manipulations similar to those used to show (1.20).

Example 1.21 Joint Stationarity
Consider the two series, xt and yt, formed from the sum and difference of two
successive values of a white noise process, say,

xt = wt + wt−1 and yt = wt − wt−1,

where wt are independent random variables with zero means and variance σ2
w.

It is easy to show that γx(0) = γy(0) = 2σ2
w and

γx(1) = γx(−1) = σ2
w, γy(1) = γy(−1) = −σ2

w. Also,

γxy(1) = cov(xt+1, yt) = cov(wt+1 + wt, wt − wt−1) = σ2
w

because only one term is nonzero (recall Property 1.1). Similarly,
γxy(0) = 0, γxy(−1) = −σ2

w. We obtain, using (1.22),

ρxy(h) =


0 h = 0,
1
2 h = 1,
− 1

2 h = −1,
0 |h| ≥ 2.

Clearly, the autocovariance and cross-covariance functions depend only on the
lag separation, h, so the series are jointly stationary.

Example 1.22 Prediction Using Cross-Correlation
Consider the problem of determining possible leading or lagging relations
between two series xt and yt. If the model

yt = Axt−` + wt

holds, the series xt is said to lead yt for ` > 0 and is said to lag yt for ` < 0.
Hence, the analysis of leading and lagging relations might be important in
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predicting the value of yt from xt. Assuming that the noise wt is uncorrelated
with the xt series, the cross-covariance function can be computed as

γyx(h) = cov(yt+h, xt) = cov(Axt+h−` + wt+h, xt)

= cov(Axt+h−`, xt) = Aγx(h− `) .

Since the largest value of |γx(h− `)| is γx(0), i.e., when h = `, the
cross-covariance function will look like the autocovariance of the input series
xt, and it will have a “peak” on the positive side if xt leads yt and a “peak” on
the negative side if xt lags yt. Below is the R code of an example with ` = 5
and γ̂yx(h) is shown in Figure 1.12.
x = rnorm(100); y = lag(x,-5) + rnorm(100)
ccf(y, x, ylab='CCovF', type='covariance')

1.6 Estimation of Correlation

For data analysis, only the sample values, x1, x2, . . . , xn, are available for
estimating the mean, autocovariance, and autocorrelation functions. In this case,
the assumption of stationarity becomes critical and allows the use of averaging to
estimate the population means and covariance functions.

Accordingly, if a time series is stationary, the mean function (1.16) µt = µ is
constant so that we can estimate it by the sample mean,

x̄ =
1
n

n

∑
t=1

xt. (1.24)

The estimate is unbiased, E(x̄) = µ, and its standard error is the square root of
var(x̄), which can be computed using first principles (recall Property 1.1), and is
given by

var(x̄) =
1
n

n

∑
h=−n

(
1− |h|

n

)
γx(h) . (1.25)

If the process is white noise, (1.25) reduces to the familiar σ2
x /n recalling that

γx(0) = σ2
x . Note that in the case of dependence, the standard error of x̄ may be

smaller or larger than the white noise case depending on the nature of the
correlation structure (see Problem 1.13).

The theoretical autocorrelation function, (1.18), is estimated by the sample
ACF as follows.

Definition 1.12 The sample autocorrelation function (ACF) is defined as

ρ̂(h) =
γ̂(h)
γ̂(0)

=
∑n−h

t=1 (xt+h − x̄)(xt − x̄)
∑n

t=1(xt − x̄)2 (1.26)

for h = 0, 1, . . . , n− 1.

The sum in the numerator of (1.26) runs over a restricted range because xt+h
is not available for t + h > n. Note that we are in fact estimating the
autocovariance function by
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Fig. 1.13. Display for Example 1.23. For the SOI series, we have a scatterplot of pairs of values one
month apart (left) and six months apart (right). The estimated correlation is displayed in the box.

γ̂(h) = n−1
n−h

∑
t=1

(xt+h − x̄)(xt − x̄), (1.27)

with γ̂(−h) = γ̂(h) for h = 0, 1, . . . , n− 1. That is, we divide by n even though
there are only n− h pairs of observations at lag h,

{(xt+h, xt); t = 1, . . . , n− h} . (1.28)

This assures that the sample ACF will behave as a true autocorrelation function,
and for example, will not give values bigger than one in absolute value.

Example 1.23 Sample ACF and Scatterplots
Estimating autocorrelation is similar to estimating of correlation in the classical
case, but now we have the n− h pairs of observations displayed in (1.28).
Figure 1.13 shows an example using the SOI series where ρ̂(1) = .604 and
ρ̂(6) = −.187. The following code was used for Figure 1.13.
(r = round(acf(soi, 6, plot=FALSE)$acf[-1], 3)) # sample acf values
[1] 0.604 0.374 0.214 0.050 -0.107 -0.187

par(mfrow=c(1,2), mar=c(3,3,1,1), mgp=c(1.6,.6,0))
plot(lag(soi,-1), soi); legend('topleft', legend=r[1])
plot(lag(soi,-6), soi); legend('topleft', legend=r[6])

It is important to note that this approach makes sense only if the data are
stationary. If the data were not stationary, each point in the graph is an
observation from a different correlation structure.

The sample autocorrelation function has a sampling distribution that allows
us to assess whether the data comes from a completely random or white series or
whether correlations are statistically significant at some lags.

Property 1.2 Large-Sample Distribution of the ACF
If xt is white noise, then for n large and under mild conditions, the sample

ACF, ρ̂x(h), for h = 1, 2, . . . , H, where H is fixed but arbitrary, is approximately
normal with zero mean and standard deviation given by of 1√

n .

Based on Property 1.2, we obtain a rough method for assessing whether a
series is white noise by determining how many values of ρ̂(h) are outside the
interval ±2/

√
n (two standard errors); for white noise, approximately 95% of the

sample ACFs should be within these limits.4 The bounds do not hold in general
4 In this text, z.025 = 1.95996398454005423552 . . . of normal fame, which is often rounded to 1.96,
is rounded to 2.
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Fig. 1.14. Realization of (1.29), n = 10.

and can be ignored if the interest is other than assessing whiteness. The
applications of this property develop because many statistical modeling
procedures depend on reducing a time series to a white noise series using various
kinds of transformations. Afterwards the plotted ACF of the residuals behave as
stated.

Example 1.24 A Simulated Time Series
To compare the sample ACF for various sample sizes to the theoretical ACF,
consider a contrived set of data generated by tossing a fair coin, letting xt = 2
when a head is obtained and xt = −2 when a tail is obtained. Then, because we
can only appreciate 2, 4, 6, or 8, we let

yt = 5 + xt − .5xt−1 . (1.29)

We consider two cases, one with a small sample size (n = 10; see Figure 1.14)
and another with a moderate sample size (n = 100).
set.seed(101011)
x1 = 2*(2*rbinom(11, 1, .5) - 1) # simulated sequence of coin tosses
x2 = 2*(2*rbinom(101, 1, .5) - 1)
y1 = 5 + filter(x1, sides=1, filter=c(1,-.5))[-1]
y2 = 5 + filter(x2, sides=1, filter=c(1,-.5))[-1]
tsplot(y1, type='s'); points(y1) # y2 not shown

acf(y1, lag.max=4, plot=FALSE) # 1/
√

10 =.32
Autocorrelations of series 'y1', by lag

0 1 2 3 4
1.000 -0.352 -0.316 0.510 -0.245

acf(y2, lag.max=4, plot=FALSE) # 1/
√

100 =.1
Autocorrelations of series 'y2', by lag

0 1 2 3 4
1.000 -0.496 0.067 0.087 0.063

The theoretical ACF can be obtained from the model (1.29) using first
principles so that

ρy(1) =
−.5

1 + .52 = −.4

and ρy(h) = 0 for |h| > 1 (do Problem 1.18 now). It is interesting to compare
the theoretical ACF with sample ACFs for the realization where n = 10 and the
other realization where n = 100; note the increased variability in the smaller
size sample.
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Definition 1.13 The estimators for the cross-covariance function, γxy(h), as
given in (1.21) and the cross-correlation, ρxy(h), in (1.22) are given,
respectively, by the sample cross-covariance function

γ̂xy(h) = n−1
n−h

∑
t=1

(xt+h − x̄)(yt − ȳ), (1.30)

where γ̂xy(−h) = γ̂yx(h) determines the function for negative lags, and the
sample cross-correlation function

ρ̂xy(h) =
γ̂xy(h)√

γ̂x(0)γ̂y(0)
. (1.31)

The sample cross-correlation function can be examined graphically as a
function of lag h to search for leading or lagging relations in the data using the
property mentioned in Example 1.22 for the theoretical cross-covariance
function. Because −1 ≤ ρ̂xy(h) ≤ 1, the practical importance of peaks can be
assessed by comparing their magnitudes with their theoretical maximum values.

Property 1.3 Large-Sample Distribution of Cross-Correlation
If xt and yt are independent processes, then under mild conditions, the large

sample distribution of ρ̂xy(h) is normal with mean zero and standard deviation
1√
n if at least one of the processes is independent white noise.

Example 1.25 SOI and Recruitment Correlation Analysis
The autocorrelation and cross-correlation functions are also useful for analyzing
the joint behavior of two stationary series whose behavior may be related in
some unspecified way. In Example 1.4 (see Figure 1.5), we have considered
simultaneous monthly readings of the SOI and the number of new fish
(Recruitment) computed from a model. Figure 1.15 shows the autocorrelation
and cross-correlation functions (ACFs and CCF) for these two series.

Both of the ACFs exhibit periodicities corresponding to the correlation
between values separated by 12 units. Observations 12 months or one year apart
are strongly positively correlated, as are observations at multiples such as
24, 36, 48, . . . Observations separated by six months are negatively correlated,
showing that positive excursions tend to be associated with negative excursions
six months removed. This appearance is rather characteristic of the pattern that
would be produced by a sinusoidal component with a period of 12 months; see
Example 1.26. The cross-correlation function peaks at h = −6, showing that
the SOI measured at time t− 6 months is associated with the Recruitment
series at time t. We could say the SOI leads the Recruitment series by six
months. The sign of the CCF at h = −6 is negative, leading to the conclusion
that the two series move in different directions; that is, increases in SOI lead to
decreases in Recruitment and vice versa. Again, note the periodicity of 12
months in the CCF.

The flat lines shown on the plots indicate ±2/
√

453, so that upper values
would be exceeded about 2.5% of the time if the noise were white as specified
in Property 1.2 and Property 1.3. Of course, neither series is noise, so we can
ignore these lines. To reproduce Figure 1.15 in R, use the following commands:
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Fig. 1.15. Sample ACFs of the SOI series (top) and of the Recruitment series (middle), and the sample
CCF of the two series (bottom); negative lags indicate SOI leads Recruitment. The lag axes are in
terms of seasons (12 months).

par(mfrow=c(3,1))
acf1(soi, 48, main="Southern Oscillation Index")
acf1(rec, 48, main="Recruitment")
ccf2(soi, rec, 48, main="SOI vs Recruitment")

Example 1.26 Prewhitening and Cross Correlation Analysis
Although we do not have all the tools necessary yet, it is worthwhile to discuss
the idea of prewhitening a series prior to a cross-correlation analysis. The basic
idea is simple; in order to use Property 1.3, at least one of the series must be
white noise. If this is not the case, there is no simple way to tell if a
cross-correlation estimate is significantly different from zero. Hence, in
Example 1.25, we were only guessing at the linear dependence relationship
between SOI and Recruitment.

For example, in Figure 1.16 we generated two series, xt and yt, for
t = 1, . . . , 120 independently as

xt = 2 cos(2π t 1
12 ) + wt1 and yt = 2 cos(2π [t + 5] 1

12 ) + wt2

where {wt1, wt2; t = 1, . . . , 120} are all independent standard normals. The
series are made to resemble SOI and Recruitment. The generated data are
shown in the top row of the figure. The middle row of Figure 1.16 show the
sample ACF of each series, each of which exhibits the cyclic nature of each
series. The bottom row (left) of Figure 1.16 shows the sample CCF between xt
and yt, which appears to show cross-correlation even though the series are
independent. The bottom row (right) also displays the sample CCF between xt
and the prewhitened yt, which shows that the two sequences are uncorrelated.
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Fig. 1.16. Display for Example 1.26

By prewhtiening yt, we mean that the signal has been removed from the data by
running a regression of yt on cos(2πt) and sin(2πt) [see Example 2.10] and
then putting ỹt = yt − ŷt, where ŷt are the predicted values from the
regression.

The following code will reproduce Figure 1.16.
set.seed(1492); num = 120; t = 1:num
X = ts(2*cos(2*pi*t/12) + rnorm(num), freq=12 )
Y = ts(2*cos(2*pi*(t+5)/12) + rnorm(num), freq=12 )
Yw = resid( lm(Y~ cos(2*pi*t/12) + sin(2*pi*t/12), na.action=NULL) )
par(mfrow=c(3,2), mgp=c(1.6,.6,0), mar=c(3,3,1,1) )
plot(X); plot(Y)
acf1(X, 48); acf1(Y, 48)
ccf2(X, Y, 24); ccf2(X, Yw, 24, ylim=c(-.6,.6))

Problems

1.1 In 25 words or less, and without using symbols, why is stationarity important?

1.2 (a) Generate n = 100 observations from the autoregression

xt = −.9xt−2 + wt

with σw = 1, using the method described in Example 1.8. Next, apply the
moving average filter

vt = (xt + xt−1 + xt−2 + xt−3)/4

to xt, the data you generated. Now plot xt as a line and superimpose vt as a
dashed line. Note: v = filter(x, rep(1/4, 4), sides = 1)
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(b) Repeat (a) but with
xt = 2 cos(2πt/4) + wt,

where wt ∼ iid N(0, 1).
(c) Repeat (a) but where xt is the log of the Johnson & Johnson data discussed in

Example 1.1.
(d) What is seasonal adjustment (you can do an internet search)?
(e) State your conclusions (in other words, what did you learn from this exercise).

1.3 Show that the autocovariance function can be written as

γ(s, t) = E[(xs − µs)(xt − µt)] = E(xsxt)− µsµt,

where E[xt] = µt.

1.4 Consider the time series

xt = β0 + β1t + wt,

where β0 and β1 are regression coefficients, and wt is a white noise process with
variance σ2

w.

(a) Determine whether xt is stationary.
(b) Show that the process yt = xt − xt−1 is stationary.
(c) Show that the mean of the moving average

vt =
1
3
(xt−1 + xt + xt+1)

is β0 + β1t.

1.5 For a moving average process of the form

xt = wt−1 + 2wt + wt+1,

where wt are independent with zero means and variance σ2
w, determine the

autocovariance and autocorrelation functions as a function of lag h and sketch the
ACF as a function of h.

1.6 Consider the random walk with drift model

xt = δ + xt−1 + wt,

for t = 1, 2, . . . , with x0 = 0, where wt is white noise with variance σ2
w.

(a) Show that the model can be written as xt = δt + ∑t
k=1 wk.

(b) Find the mean function and the autocovariance function of xt.
(c) Argue that xt is not stationary.

(d) Show ρx(t− 1, t) =
√

t−1
t → 1 as t→ ∞. What is the implication of this

result?
(e) Suggest a transformation to make the series stationary, and prove that the

transformed series is stationary. (Hint: See Problem 1.4b.)
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1.7 Would you treat the global temperature data discussed in Example 1.2 and
shown in Figure 1.3 as stationary or non-stationary? Support your answer.

1.8 A time series with a periodic component can be constructed from

xt = U1 sin(2πω0t) + U2 cos(2πω0t),

where U1 and U2 are independent random variables with zero means and
E(U2

1) = E(U2
2) = σ2. The constant ω0 determines the period or time it takes

the process to make one complete cycle. Show that this series is weakly
stationary with autocovariance function

γ(h) = σ2 cos(2πω0h).

1.9 Suppose we would like to predict a single stationary series xt with zero mean
and autocorrelation function γ(h) at some time in the future, say, t + m, for
m > 0.

(a) If we predict using only xt and some scale multiplier A, show that the
mean-square prediction error

MSE(A) = E[(xt+m − Axt)
2]

is minimized by the value
A = ρ(m).

(b) Show that the minimum mean-square prediction error is

MSE(A) = γ(0)[1− ρ2(m)].

(c) Show that if xt+m = Axt, then ρ(m) = 1 if A > 0, and ρ(m) = −1 if
A < 0.

1.10 For two jointly stationary series xt and yt, verify (1.23).

1.11 Consider the two series
xt = wt

yt = wt − θwt−1 + ut,

where wt and ut are independent white noise series with variances σ2
w and σ2

u ,
respectively, and θ is an unspecified constant.

(a) Express the ACF, ρy(h), for h = 0,±1,±2, . . . of the series yt as a function
of σ2

w, σ2
u , and θ.

(b) Determine the CCF, ρxy(h) relating xt and yt.
(c) Show that xt and yt are jointly stationary.

1.12 Let wt, for t = 0,±1,±2, . . . be a normal white noise process, and consider
the series

xt = wtwt−1.

Determine the mean and autocovariance function of xt, and state whether it is
stationary.
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1.13 Suppose xt = µ + wt + θwt−1, where wt ∼ wn(0, σ2
w).

(a) Show that mean function is E(xt) = µ.
(b) Show that the autocovariance function of xt is given by γx(0) = σ2

w(1 + θ2),
γx(±1) = σ2

wθ, and γx(h) = 0 otherwise.
(c) Show that xt is stationary for all values of θ ∈ R.
(d) Use (1.25) to calculate var(x̄) for estimating µ when (i) θ = 1, (ii) θ = 0,

and (iii) θ = −1
(e) In time series, the sample size n is typically large, so that (n−1)

n ≈ 1. With
this as a consideration, comment on the results of part (d); in particular, how
does the accuracy in the estimate of the mean µ change for the three different
cases?

1.14 (a) Simulate a series of n = 500 Gaussian white noise observations as in
Example 1.6 and compute the sample ACF, ρ̂(h), to lag 20. Compare the
sample ACF you obtain to the actual ACF, ρ(h). [Recall Example 1.18.]

(b) Repeat part (a) using only n = 50. How does changing n affect the results?

1.15 (a) Simulate a series of n = 500 moving average observations as in
Example 1.7 and compute the sample ACF, ρ̂(h), to lag 20. Compare the
sample ACF you obtain to the actual ACF, ρ(h). [Recall Example 1.19.]

(b) Repeat part (a) using only n = 50. How does changing n affect the results?

1.16 Simulate 500 observations from the AR model specified in Example 1.8 and
then plot the sample ACF to lag 50. What does the sample ACF tell you about the
approximate cyclic behavior of the data? Hint: Recall Example 1.25.

1.17 Simulate a series of n = 500 observations from the signal-plus-noise model
presented in Example 1.10 with (a) σw = 0, (b) σw = 1 and (c) σw = 5. Compute
the sample ACF to lag 100 of the three series you generated and comment.

1.18 For the time series yt described in Example 1.24, verify the stated result that
ρy(1) = −.4 and ρy(h) = 0 for h > 1.



Chapter 2
Time Series Regression and EDA

2.1 Classical Regression for Time Series
We begin our discussion of linear regression in the time series context by
assuming some output or dependent time series, say, xt, for t = 1, . . . , n, is being
influenced by a collection of possible inputs or independent series, say,
zt1, zt2, . . . , ztq, where we first regard the inputs as fixed and known. This
assumption, necessary for applying conventional linear regression, will be
relaxed later on. We express this relation through the linear regression model

xt = β0 + β1zt1 + β2zt2 + · · ·+ βqztq + wt, (2.1)

where β0, β1, . . . , βq are unknown fixed regression coefficients, and {wt} is a
random error or noise process consisting of independent and identically
distributed (iid) normal variables with mean zero and variance σ2

w; we will relax
the iid assumption later.

Example 2.1 Estimating a Linear Trend
Consider the monthly price (per pound) of a chicken in the US from mid-2001
to mid-2016 (180 months), say xt, shown in Figure 2.1. There is an obvious
upward trend in the series, and we might use simple linear regression to
estimate that trend by fitting the model

xt = β0 + β1zt + wt, zt = 2001 7
12 , 2001 8

12 , . . . , 2016 6
12 .

This is in the form of the regression model (2.1) with q = 1. Note that we are
making the assumption that the errors, wt, are an iid normal sequence, which
may not be true; the problem of autocorrelated errors is discussed in detail in
Chapter 3.

In ordinary least squares (OLS), we minimize the error sum of squares

Q =
n

∑
t=1

w2
t =

n

∑
t=1

(xt − [β0 + β1zt])
2

with respect to βi for i = 0, 1. In this case we can use simple calculus to
evaluate ∂Q/∂βi = 0 for i = 0, 1, to obtain two equations to solve for the βs.
The OLS estimates of the coefficients are explicit and given by
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Fig. 2.1. The price of chicken: monthly whole bird spot price, Georgia docks, US cents per pound,
August 2001 to July 2016, with fitted linear trend line.

β̂1 =
∑n

t=1(xt − x̄)(zt − z̄)
∑n

t=1(zt − z̄)2 and β̂0 = x̄− β̂1 z̄ ,

where x̄ = ∑t xt/n and z̄ = ∑t zt/n are the respective sample means.
Using R, we obtained the estimated slope coefficient of β̂1 = 3.59 (with a

standard error of .08) yielding a highly significant estimated increase of about
3.6 cents per year.1 Finally, Figure 2.1 shows the data with the estimated trend
line superimposed. To perform this analysis in R, use the following commands:
summary(fit <- lm(chicken~time(chicken))) # regress price on time
tsplot(chicken, ylab="cents per pound")
abline(fit) # add the fitted regression line to the plot

The multiple linear regression model described by (2.1) can be conveniently
written in a more general notation by defining the column vectors
zt = (1, zt1, zt2, . . . , ztq)′ and β = (β0, β1, . . . , βq)′, where ′ denotes transpose,
so (2.1) can be written in the alternate form

xt = β0 + β1zt1 + · · ·+ βqztq + wt = β′zt + wt. (2.2)

where wt ∼ iid N(0, σ2
w). As in the previous example, OLS estimation minimizes

the error sum of squares

Q =
n

∑
t=1

w2
t =

n

∑
t=1

(xt − β′zt)
2, (2.3)

with respect to β0, β1, . . . , βq. This minimization can be accomplished by solving
∂Q/∂βi = 0 for i = 0, 1, . . . , q, which yields q + 1 equations with q + 1
unknowns. In vector notation, this procedure gives the normal equations( n

∑
t=1

ztz′t

)
β̂ =

n

∑
t=1

ztxt. (2.4)

If ∑n
t=1 ztz′t is non-singular, the least squares estimate of β is

β̂ =

( n

∑
t=1

ztz′t

)−1 n

∑
t=1

ztxt.

1 The unit of time here is one year, zt − zt−12 = 1. Thus x̂t − x̂t−12 = β̂1(zt − zt−12) = β̂1.
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The minimized error sum of squares (2.3), denoted SSE, can be written as

SSE =
n

∑
t=1

(xt − x̂t)
2 =

n

∑
t=1

(xt − β̂′zt)
2. (2.5)

The ordinary least squares estimators are unbiased, i.e., E(β̂) = β, and have the
smallest variance within the class of linear unbiased estimators.

If the errors wt are normally distributed, β̂ is normally distributed with

cov(β̂) = σ2
wC , (2.6)

where

C =

(
n

∑
t=1

ztz′t

)−1

(2.7)

is a convenient notation. An unbiased estimator for the variance σ2
w is

s2
w = MSE =

SSE
n− (q + 1)

, (2.8)

where MSE denotes the mean squared error. Under the normal assumption,

t =
(β̂i − βi)

sw
√

cii
(2.9)

has the t-distribution with n− (q + 1) degrees of freedom; cii denotes the i-th
diagonal element of C, as defined in (2.7). This result is often used for individual
tests of the null hypothesis H0 : βi = 0 for i = 1, . . . , q.

Various competing models are often of interest to isolate or select the best
subset of independent variables. Suppose a proposed model specifies that only a
subset r < q independent variables, say, zt,1:r = {zt1, zt2, . . . , ztr} is influencing
the dependent variable xt. The reduced model is

xt = β0 + β1zt1 + · · ·+ βrztr + wt (2.10)

where β1, β2, . . . , βr are a subset of coefficients of the original q variables.
The null hypothesis in this case is H0 : βr+1 = · · · = βq = 0. We can test the

reduced model (2.10) against the full model (2.2) by comparing the error sums of
squares under the two models using the F-statistic

F =
(SSEr − SSE)/(q− r)

SSE/(n− q− 1)
=

MSR
MSE

, (2.11)

where SSEr is the error sum of squares under the reduced model (2.10). Note that
SSEr ≥ SSE because the full model has more parameters. If
H0 : βr+1 = · · · = βq = 0 is true, then SSEr ≈ SSE because the estimates of
those βs will be close to 0. Hence, we do not believe H0 if SSR = SSEr − SSE
is big. Under the null hypothesis, (2.11) has a central F-distribution with q− r
and n− q− 1 degrees of freedom when (2.10) is the correct model.

These results are often summarized in an ANOVA table as given in Table 2.1
for this particular case. The difference in the numerator is often called the
regression sum of squares (SSR). The null hypothesis is rejected at level α if
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Table 2.1. Analysis of Variance for Regression

Source df Sum of Squares Mean Square F

zt,r+1:q q− r SSR = SSEr − SSE MSR = SSR/(q− r) F = MSR
MSE

Error n− (q + 1) SSE MSE = SSE/(n− q− 1)

F > Fq−r
n−q−1(α), the 1− α percentile of the F distribution with q− r numerator

and n− q− 1 denominator degrees of freedom.
A special case of interest is H0 : β1 = · · · = βq = 0. In this case r = 0, and

the model in (2.10) becomes

xt = β0 + wt .

We may measure the proportion of variation accounted for by all the variables
using

R2 =
SSE0 − SSE

SSE0
, (2.12)

where the residual sum of squares under the reduced model is

SSE0 =
n

∑
t=1

(xt − x̄)2 . (2.13)

In this case SSE0 is the sum of squared deviations from the mean x̄ and is
otherwise known as the adjusted total sum of squares. The measure R2 is called
the coefficient of determination.

The techniques discussed in the previous paragraph can be used to test various
models against one another using the F-test given in (2.11). These tests have been
used in the past in a stepwise manner, where variables are added or deleted when
the values from the F-test either exceed or fail to exceed some predetermined
levels. The procedure, called stepwise multiple regression, is useful in arriving at
a set of useful variables. An alternative is to focus on a procedure for model
selection that does not proceed sequentially, but simply evaluates each model on
its own merits. Suppose we consider a normal regression model with k
coefficients and denote the maximum likelihood estimator for the variance as

σ̂2
k =

SSE(k)
n

, (2.14)

where SSE(k) denotes the residual sum of squares under the model with k
regression coefficients. Then, Akaike (1969, 1973, 1974) suggested measuring
the goodness of fit for this particular model by balancing the error of the fit
against the number of parameters in the model; we define the following.

Definition 2.1 Akaike’s Information Criterion (AIC)

AIC = log σ̂2
k +

n + 2k
n

, (2.15)

where σ̂2
k is given by (2.14) and k is the number of parameters in the model.
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The value of k yielding the minimum AIC specifies the best model.2 The idea
is roughly that minimizing σ̂2

k would be a reasonable objective, except that it
decreases monotonically as k increases. Therefore, we ought to penalize the error
variance by a term proportional to the number of parameters. The choice for the
penalty term given by (2.15) is not the only one, and a considerable literature is
available advocating different penalty terms. A corrected form, suggested by
Sugiura (1978), and expanded by Hurvich and Tsai (1989), can be based on
small-sample distributional results for the linear regression model. The corrected
form is defined as follows.

Definition 2.2 AIC, Bias Corrected (AICc)

AICc = log σ̂2
k +

n + k
n− k− 2

, (2.16)

where σ̂2
k is given by (2.14), k is the number of parameters in the model, and n is

the sample size.

We may also derive a correction term based on Bayesian arguments, as in
Schwarz (1978), which leads to the following.

Definition 2.3 Bayesian Information Criterion (BIC)

BIC = log σ̂2
k +

k log n
n

, (2.17)

using the same notation as in Definition 2.2.

BIC is also called the Schwarz Information Criterion (SIC); see also Rissanen
(1978) for an approach yielding the same statistic based on a minimum
description length argument. Various simulation studies have tended to verify
that BIC does well at getting the correct order in large samples, whereas AICc
tends to be superior in smaller samples where the relative number of parameters
is large; see McQuarrie and Tsai (1998) for detailed comparisons. In fitting
regression models, two measures that have been used in the past are adjusted
R-squared, which is essentially s2

w, and Mallows Cp, Mallows (1973), which we
do not consider in this context.

Example 2.2 Pollution, Temperature and Mortality
The data shown in Figure 2.2 are extracted series from a study by Shumway et
al. (1988) of the possible effects of temperature and pollution on weekly
mortality in Los Angeles County. Note the strong seasonal components in all of
the series, corresponding to winter-summer variations and the downward trend
in the cardiovascular mortality over the 10-year period.

A scatterplot matrix, shown in Figure 2.3, indicates a possible linear
relation between mortality and the pollutant particulates and a possible relation
to temperature. Note the curvilinear shape of the temperature mortality curve,
indicating that higher temperatures as well as lower temperatures are associated
with increases in cardiovascular mortality.

2 Formally, AIC is defined as−2 log Lk + 2k where Lk is the maximum value of the likelihood and k
is the number of parameters in the model. For the normal regression problem, AIC can be reduced
to the form given by (2.15).
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Fig. 2.2. Average weekly cardiovascular mortality (top), temperature (middle) and particulate pollution
(bottom) in Los Angeles County. There are 508 six-day smoothed averages obtained by filtering daily
values over the 10 year period 1970-1979.

Table 2.2. Summary Statistics for Mortality Models

Model k SSE df MSE R2 AIC BIC

(2.18) 2 40,020 506 79.0 .21 5.38 5.40
(2.19) 3 31,413 505 62.2 .38 5.14 5.17
(2.20) 4 27,985 504 55.5 .45 5.03 5.07
(2.21) 5 20,508 503 40.8 .60 4.72 4.77

Based on the scatterplot matrix, we entertain, tentatively, four models
where Mt denotes cardiovascular mortality, Tt denotes temperature and Pt
denotes the particulate levels. They are

Mt = β0 + β1t + wt (2.18)
Mt = β0 + β1t + β2(Tt − T·) + wt (2.19)
Mt = β0 + β1t + β2(Tt − T·) + β3(Tt − T·)2 + wt (2.20)
Mt = β0 + β1t + β2(Tt − T·) + β3(Tt − T·)2 + β4Pt + wt (2.21)

where we adjust temperature for its mean, T· = 74.26, to avoid collinearity
problems. It is clear that (2.18) is a trend only model, (2.19) is linear
temperature, (2.20) is curvilinear temperature and (2.21) is curvilinear
temperature and pollution. We summarize some of the statistics given for this
particular case in Table 2.2.

We note that each model does substantially better than the one before it and
that the model including temperature, temperature squared, and particulates
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Fig. 2.3. Scatterplot matrix showing relations between mortality, temperature, and pollution.

does the best, accounting for some 60% of the variability and with the best
value for AIC and BIC (because of the large sample size, AIC and AICc are
nearly the same). Note that one can compare any two models using the residual
sums of squares and (2.11). Hence, a model with only trend could be compared
to the full model using q = 4, r = 1, n = 508, so

F3,503 =
(40, 020− 20, 508)/3

20, 508/503
= 160,

which exceeds F3,503(.001) = 5.51. We obtain the best prediction model,

M̂t = 2831.5− 1.396(.10)trend− .472(.032)(Tt − 74.26)

+ .023(.003)(Tt − 74.26)2 + .255(.019)Pt,

for mortality, where the standard errors, computed from (2.6)–(2.8), are given
in parentheses. As expected, a negative trend is present in time as well as a
negative coefficient for adjusted temperature. The quadratic effect of
temperature can clearly be seen in the scatterplots of Figure 2.3. Pollution
weights positively and can be interpreted as the incremental contribution to
daily deaths per unit of particulate pollution. It would still be essential to check
the residuals ŵt = Mt − M̂t for autocorrelation (of which there is a substantial
amount), but we defer this question to Section 3.9 when we discuss regression
with correlated errors.

Below is the R code to plot the series, display the scatterplot matrix, fit the
final regression model (2.21), and compute the corresponding values of AIC,
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AICc and BIC.3 Finally, the use of na.action in lm() is to retain the time series
attributes for the residuals and fitted values.
par(mfrow=c(3,1)) # plot the data
tsplot(cmort, main="Cardiovascular Mortality", ylab="")
tsplot(tempr, main="Temperature", ylab="")
tsplot(part, main="Particulates", ylab="")
dev.new() # open a new graphic device
ts.plot(cmort,tempr,part, col=1:3) # all on same plot (not shown)
legend('topright', legend=c('Mortality', 'Temperature', 'Pollution'),

lty=1, col=1:3)
dev.new()
pairs(cbind(Mortality=cmort, Temperature=tempr, Particulates=part))
temp = tempr-mean(tempr) # center temperature
temp2 = temp^2
trend = time(cmort) # time
fit = lm(cmort~ trend + temp + temp2 + part, na.action=NULL)
summary(fit) # regression results
summary(aov(fit)) # ANOVA table (compare to next line)
summary(aov(lm(cmort~cbind(trend, temp, temp2, part)))) # Table 2.1
num = length(cmort) # sample size
AIC(fit)/num - log(2*pi) # AIC
BIC(fit)/num - log(2*pi) # BIC
(AICc = log(sum(resid(fit)^2)/num) + (num+5)/(num-5-2)) # AICc

As previously mentioned, it is possible to include lagged variables in time
series regression models and we will continue to discuss this type of problem
throughout the text. This concept is explored further in Problem 2.2. The
following is a simple example of lagged regression.

Example 2.3 Regression With Lagged Variables
In Example 1.25, we discovered that the Southern Oscillation Index (SOI)
measured at time t− 6 months is associated with the Recruitment series at time
t, indicating that the SOI leads the Recruitment series by six months. Although
there is strong evidence that the relationship is NOT linear (this is discussed
further in Example 2.8), for demonstration purposes only, we consider the
following regression,

Rt = β0 + β1St−6 + wt, (2.22)

where Rt denotes Recruitment for month t and St−6 denotes SOI six months
prior. Assuming the wt sequence is white, the fitted model is

R̂t = 65.79− 44.28(2.78)St−6 (2.23)

with σ̂w = 22.5 on 445 degrees of freedom. This result indicates the strong
predictive ability of SOI for Recruitment six months in advance. Of course, it is
still essential to check the the model assumptions, but we defer this discussion
until later.

Performing lagged regression in R is a little difficult because the series must
be aligned prior to running the regression. The easiest way to do this is to create
an object that we call fish using ts.intersect, which aligns the lagged series.

3 The easiest way to extract AIC and BIC from an lm() run in R is to use the command AIC()
or BIC(). Our definitions differ from R by terms that do not change from model to model. In the
example, we show how to obtain (2.15) and (2.17) from the R output. It is more difficult to obtain
AICc.
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fish = ts.intersect( rec, soiL6=lag(soi,-6) )
summary(fit1 <- lm(rec~ soiL6, data=fish, na.action=NULL))

The headache of aligning the lagged series can be avoided by using the R
package dynlm, which must be downloaded and installed.
library(dynlm)
summary(fit2 <- dynlm(rec~ L(soi,6)))

In the dynlm example, fit2 is similar to a lm object, but the time series
attributes are retained without any additional commands.

2.2 Exploratory Data Analysis

In general, it is necessary for time series data to be stationary so averaging lagged
products over time, as in the previous section, will be a sensible thing to do. With
time series data, it is the dependence between the values of the series that is
important to measure; we must, at least, be able to estimate autocorrelations with
precision. It would be difficult to measure that dependence if the dependence
structure is not regular or is changing at every time point. Hence, to achieve any
meaningful statistical analysis of time series data, it will be crucial that, if
nothing else, the mean and the autocovariance functions satisfy the conditions of
stationarity (for at least some reasonable stretch of time) stated in Definition 1.7.
Often, this is not the case, and we mention some methods in this section for
playing down the effects of nonstationarity so the stationary properties of the
series may be studied.

A number of our examples came from clearly nonstationary series. The
Johnson & Johnson series in Figure 1.1 has a mean that increases exponentially
over time, and the increase in the magnitude of the fluctuations around this trend
causes changes in the covariance function; the variance of the process, for
example, clearly increases as one progresses over the length of the series. Also,
the global temperature series shown in Figure 1.3 contains some evidence of a
trend over time; human-induced global warming advocates seize on this as
empirical evidence to advance their hypothesis that temperatures are increasing.

Perhaps the easiest form of nonstationarity to work with is the trend
stationary model wherein the process has stationary behavior around a trend. We
may write this type of model as

xt = µt + yt (2.24)

where xt are the observations, µt denotes the trend, and yt is a stationary process.
Quite often, strong trend, µt, will obscure the behavior of the stationary process,
yt, as we shall see in numerous examples. Hence, there is some advantage to
removing the trend as a first step in an exploratory analysis of such time series.
The steps involved are to obtain a reasonable estimate of the trend component,
say µ̂t, and then work with the residuals

ŷt = xt − µ̂t. (2.25)

Consider the following example.
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Fig. 2.4. Detrended (top) and differenced (bottom) chicken price series. The original data are shown
in Figure 2.1.

Example 2.4 Detrending Chicken Prices
Here we suppose the model is of the form of (2.24),

xt = µt + yt,

where, as we suggested in the analysis of the chicken price data presented in
Example 2.1, a straight line might be useful for detrending the data; i.e.,

µt = β0 + β1 t.

In that example, we estimated the trend using ordinary least squares and found

µ̂t = −7131 + 3.59 t.

Figure 2.1 shows the data with the estimated trend line superimposed. To obtain
the detrended series we simply subtract µ̂t from the observations, xt, to obtain
the detrended series4

ŷt = xt + 7131− 3.59 t.

The top graph of Figure 2.4 shows the detrended series. Figure 2.5 shows the
ACF of the original data (top panel) as well as the ACF of the detrended data
(middle panel).

In Example 1.9 and the corresponding Figure 1.9 we saw that a random walk
might also be a good model for trend. That is, rather than modeling trend as fixed
(as in Example 2.4), we might model trend as a stochastic component using the
random walk with drift model,

µt = δ + µt−1 + wt, (2.26)
4 Because the error term, yt, is not assumed to be iid, the reader may feel that weighted least squares is
called for in this case. The problem is, we do not know the behavior of yt and that is preciselywhat we
are trying to assess at this stage. A notable result byGrenander andRosenblatt (1957, Ch 7), however,
is that under mild conditions on yt, for polynomial regression or periodic regression, asymptotically,
ordinary least squares is equivalent to weighted least squares with regard to efficiency.
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where wt is white noise and is independent of yt. If the appropriate model is
(2.24), then differencing the data, xt, yields a stationary process; that is,

xt − xt−1 = (µt + yt)− (µt−1 + yt−1) (2.27)
= δ + wt + yt − yt−1.

It is easy to show zt = yt − yt−1 is stationary using Property 1.1. That is,
because yt is stationary,

γz(h) = cov(zt+h, zt) = cov(yt+h − yt+h−1, yt − yt−1)

= 2γy(h)− γy(h + 1)− γy(h− 1) (2.28)

is independent of time; we leave it as an exercise (Problem 2.5) to show that
xt − xt−1 in (2.27) is stationary.

One advantage of differencing over detrending to remove trend is that no
parameters are estimated in the differencing operation. One disadvantage,
however, is that differencing does not yield an estimate of the stationary process
yt as can be seen in (2.27). If an estimate of yt is essential, then detrending may
be more appropriate. If the goal is to coerce the data to stationarity, then
differencing may be more appropriate. Differencing is also a viable tool if the
trend is fixed, as in Example 2.4. That is, e.g., if µt = β0 + β1 t in the model
(2.24), differencing the data produces stationarity (see Problem 2.4):

xt − xt−1 = (µt + yt)− (µt−1 + yt−1) = β1 + yt − yt−1.

Because differencing plays a central role in time series analysis, it receives its
own notation. The first difference is denoted as

∇xt = xt − xt−1. (2.29)

As we have seen, the first difference eliminates a linear trend. A second
difference, that is, the difference of (2.29), can eliminate a quadratic trend, and so
on. In order to define higher differences, we need a variation in notation that we
will use often in our discussion of ARIMA models in Chapter 3.

Definition 2.4 We define the backshift operator by

Bxt = xt−1

and extend it to powers B2xt = B(Bxt) = Bxt−1 = xt−2, and so on. Thus,

Bkxt = xt−k. (2.30)

The idea of an inverse operator can also be given if we require B−1B = 1, so
that

xt = B−1Bxt = B−1xt−1.

That is, B−1 is the forward-shift operator. In addition, it is clear that we may
rewrite (2.29) as

∇xt = (1− B)xt, (2.31)

and we may extend the notion further. For example, the second difference
becomes
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Fig. 2.5. Sample ACFs of chicken prices (top), and of the detrended (middle) and the differenced
(bottom) series. Compare the top plot with the sample ACF of a straight line: acf(1:100).

∇2xt = (1− B)2xt = (1− 2B + B2)xt = xt − 2xt−1 + xt−2 (2.32)

by the linearity of the operator. To check, just take the difference of the first
difference ∇(∇xt) = ∇(xt − xt−1) = (xt − xt−1)− (xt−1 − xt−2).

Definition 2.5 Differences of order d are defined as

∇d = (1− B)d, (2.33)

where we may expand the operator (1− B)d algebraically to evaluate for higher
integer values of d. When d = 1, we drop it from the notation.

The first difference (2.29) is an example of a linear filter applied to eliminate
a trend. Other filters, formed by averaging values near xt, can produce adjusted
series that eliminate other kinds of unwanted fluctuations, as in Chapter 4. The
differencing technique is an important component of the ARIMA model
discussed in Chapter 3.

Example 2.5 Differencing Chicken Prices
The first difference of the chicken prices series, also shown in Figure 2.4,
produces different results than removing trend by detrending via regression. For
example, the five-year business cycle we observed in the detrended series is not
obvious in the differenced series (although it is still there, which can be verified
using Chapter 4 techniques).

The ACF of this series is also shown in Figure 2.5. In this case, the
difference series exhibits an annual cycle that was not seen in the original or
detrended data.
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Fig. 2.6. Differenced global temperature series and its sample ACF.

The R code to reproduce Figure 2.4 and Figure 2.5 is as follows.
fit = lm(chicken~time(chicken), na.action=NULL) # regress chicken on time
par(mfrow=c(2,1))
tsplot(resid(fit), main="detrended")
tsplot(diff(chicken), main="first difference")
par(mfrow=c(3,1)) # plot ACFs
acf1(chicken, 48, main="chicken")
acf1(resid(fit), 48, main="detrended")
acf1(diff(chicken), 48, main="first difference")

Example 2.6 Differencing Global Temperature
The global temperature series shown in Figure 1.3 appears to behave more as a
random walk than a trend stationary series. Hence, rather than detrend the data,
it would be more appropriate to use differencing to coerce it into stationarity.
The detreded data are shown in Figure 2.6 along with the corresponding sample
ACF. In this case it appears that the differenced process shows minimal
autocorrelation, which may imply the global temperature series is nearly a
random walk with drift. It is interesting to note that if the series is a random
walk with drift, the mean of the differenced series, which is an estimate of the
drift, is about .008, or an increase of about one degree centigrade per 100 years.

The R code to reproduce Figure 2.4 and Figure 2.5 is as follows.
par(mfrow=c(2,1))
tsplot(diff(globtemp), type="o")
mean(diff(globtemp)) # drift estimate = .008
acf1(diff(gtemp), 48)

Often, obvious aberrations are present that can contribute nonstationary as
well as nonlinear behavior in observed time series. In such cases, transformations
may be useful to equalize the variability over the length of a single series. A
particularly useful transformation is

yt = log xt, (2.34)
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Fig. 2.7. Glacial varve thicknesses (top) from Massachusetts for n = 634 years compared with log
transformed thicknesses (bottom).

which tends to suppress larger fluctuations that occur over portions of the series
where the underlying values are larger. Other possibilities are power
transformations in the Box–Cox family of the form

yt =

{
(xλ

t − 1)/λ λ 6= 0,
log xt λ = 0.

(2.35)

Methods for choosing the power λ are available (see Johnson and Wichern, 1992,
§4.7) but we do not pursue them here. Often, transformations are also used to
improve the approximation to normality or to improve linearity in predicting the
value of one series from another.

Example 2.7 Paleoclimatic Glacial Varves
Melting glaciers deposit yearly layers of sand and silt during the spring melting
seasons, which can be reconstructed yearly over a period ranging from the time
deglaciation began in New England (about 12,600 years ago) to the time it
ended (about 6,000 years ago). Such sedimentary deposits, called varves, can
be used as proxies for paleoclimatic parameters, such as temperature, because,
in a warm year, more sand and silt are deposited from the receding glacier.
Figure 2.7 shows the thicknesses of the yearly varves collected from one
location in Massachusetts for 634 years, beginning 11,834 years ago. For
further information, see Shumway and Verosub (1992). Because the variation in
thicknesses increases in proportion to the amount deposited, a logarithmic
transformation could remove the nonstationarity observable in the variance as a
function of time. Figure 2.7 shows the original and transformed varves, and it is
clear that this improvement has occurred. We may also plot the histogram of the
original and transformed data, as in Problem 2.6, to argue that the
approximation to normality is improved. The ordinary first differences (2.31)
are also computed in Problem 2.6, and we note that the first differences have a
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Fig. 2.8. Scatterplot matrix relating current SOI values, St, to past SOI values, St−h, at lags h =
1, 2, ..., 12. The values in the upper right corner are the sample autocorrelations and the lines are a
lowess fit.

significant negative correlation at lag h = 1. Later, in Chapter 5, we will show
that perhaps the varve series has long memory and will propose using fractional
differencing.

Figure 2.7 was generated in R as follows:
par(mfrow=c(2,1))
tsplot(varve, main="varve", ylab="")
tsplot(log(varve), main="log(varve)", ylab="" )

Next, we consider another preliminary data processing technique that is used
for the purpose of visualizing the relations between series at different lags,
namely, scatterplot matrices. In the definition of the ACF, we are essentially
interested in relations between xt and xt−h; the autocorrelation function tells us
whether a substantial linear relation exists between the series and its own lagged
values. The ACF gives a profile of the linear correlation at all possible lags and
shows which values of h lead to the best predictability. The restriction of this idea
to linear predictability, however, may mask a possible nonlinear relation between
current values, xt, and past values, xt−h. This idea extends to two series where
one may be interested in examining scatterplots of yt versus xt−h.

Example 2.8 Scatterplot Matrices, SOI and Recruitment
To check for nonlinear relations of this form, it is convenient to display a lagged
scatterplot matrix, as in Figure 2.8, that displays values of the SOI, St, on the
vertical axis plotted against St−h on the horizontal axis. The sample
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Fig. 2.9. Scatterplot matrix of the Recruitment series, Rt, on the vertical axis plotted against the SOI
series, St−h, on the horizontal axis at lags h = 0, 1, . . . , 8. The values in the upper right corner are the
sample cross-correlations and the lines are a lowess fit.

autocorrelations are displayed in the upper right-hand corner and superimposed
on the scatterplots are locally weighted scatterplot smoothing (lowess) lines that
can be used to help discover any nonlinearities. We discuss smoothing in the
next section, but for now, think of lowess as a method for fitting local regression.

In Figure 2.8, we notice that the lowess fits are approximately linear, so that
the sample autocorrelations are meaningful. Also, we see strong positive linear
relations at lags h = 1, 2, 11, 12, that is, between St and
St−1, St−2, St−11, St−12, and a negative linear relation at lags h = 6, 7.

Similarly, we might want to look at values of one series, say Recruitment,
denoted Rt plotted against another series at various lags, say the SOI, St−h, to
look for possible nonlinear relations between the two series. Because, for
example, we might wish to predict the Recruitment series, Rt, from current or
past values of the SOI series, St−h, for h = 0, 1, 2, ... it would be worthwhile to
examine the scatterplot matrix. Figure 2.9 shows the lagged scatterplot of the
Recruitment series Rt on the vertical axis plotted against the SOI index St−h on
the horizontal axis. In addition, the figure exhibits the sample cross-correlations
as well as lowess fits.

Figure 2.9 shows a fairly strong nonlinear relationship between
Recruitment, Rt, and the SOI series at St−5, St−6, St−7, St−8, indicating the
SOI series tends to lead the Recruitment series and the coefficients are negative,
implying that increases in the SOI lead to decreases in the Recruitment. The
nonlinearity observed in the scatterplots (with the help of the superimposed



2.2 Exploratory Data Analysis 47

●

● ●
●

● ●
●

●
●

●
●

●

●

●

●

●
● ●

●
●

●

●

●

●

●
●●

●● ●

●

●
●

● ● ●●
●

●

●

●

●
●

●●

●
●

●

●

●

●●
●

● ●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●●● ●

●●

●

●

●
●

●
●

● ●●
●

●

●
●

●
● ●● ● ●●

●●

●

●
●

●●
●

●● ● ●

●

●●● ● ●
●

●

●

●

●

●

●

●
●

●● ●
●

●
●

●
●●

●

●
●

●

●
●

●

●

● ●
●

●
●

●

●
● ●

●

●

●●

●

●
●

●

●

●

●

●
●

●
● ●

●

●

●
●

●

●

●

●

●

● ●

●

● ●
●

●

●

● ●

●

●

●● ●
●

●

●
●

●
● ●

●

● ●●

●

●

●
●

●

●

●●
●

●

● ●
● ●

●
●

●

●
●

●
●

●

●

●

●

●

●
●

●
● ●

● ●●
●

●●
● ●●

●

●
●

●

●

●● ●
● ●

●

●

●

●

●
●● ●

●

●

●

●

●●

●

● ●●
●

●
●

●

●●● ●
●●

●

●
●

●
●● ●

●
●

●

●

●

●●

●●

●

●

●

●

●

●●
●

● ●

●

●

●

●

●
●●●●

●
●

●

●
● ● ●

●
●

●
●

●

●● ●

●

●

●

●

●

●

●
●

●

●

● ●
●

●
●

●
●

●
● ●

●

●●

● ●●●
●

●

●
●

●

●
●

●
●

●
●

●●

●

●

●
●

●

●●
●

●

●

●
●

●
●

●●●
●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
● ●

●
●

●

●
●●●

●

●

● ●

●

●
●

●

●

●

●

●●

●
●
●

●

●

●

●

●
●

−1.0 −0.5 0.0 0.5 1.0

0
20

40
60

80
10

0

soiL6

re
c

+
+ +

+
+

+
+ +

+

+

+++

+

+

+ +

+

++

++

+

+
+

+

++

+

+

+

++

+
+ +

++
+

+
+

+
+ ++

+

+

+
+

+
+

+
++

+

+
+

+
+

+
+

+

+

++ +++
+

+

++

++

+++

+

+

+

+
++

+

+

+

+
+

+++

+

+ +

+

+
++

+
++

+ +
++

+
+

++ +
+

+
++

+ ++

+

+

++

+

+

++

+

+

+

+

+
+

+

+

+
+

+

+

+
+

+

+

+

+
+

+
+

+++
+

++

+++

+

+

+

+

+

++
+ +

++
+ ++

++++

++

+

+
+

+

+

+

+
+

+
+ +

+

+++

+

+

+
++

+

+
+

+

+

+

+
+

+++

+
+

+++
++

+

+
++

+

+
+

+

+

+

+

+

+
+

+ +
+

+

+
+

+

+

+
+

++
+

+

+

+

++

+

+++

+

+

+

+

+

+

+++
+

++
+

+

+++

+
+

+

+++

+
+

++
+ +

+

+

+

+

+

+
+

+

+ +

+
+

+

+
++

++ +
+

+
+

+++

++ ++

+

++

++++

+

+
+

+
+

+

+

+

+

+
+

+

+

+
+

++

++ ++
++ +

+

+
+ ++

+
+ +

+

+
+

+

++
+

+

+
+

+ +

+
+

+

++
+ + ++

++
+ +

++

+

+

++

+

++

+
+

+
+

+
+

+++++ ++

+

++

+
+

++++ +++
+

++
++

+

+ + +
++ +

++ +
++

+++ ++
+

++

+

++

+

+

+ ++ +++

+

+

+
+

+
+

Fig. 2.10. Display for Example 2.9: Plot of Recruitment (Rt) vs SOI lagged 6 months (St−6) with the
fitted values of the regression as points (+) and a lowess fit (—).

lowess fits) indicates that the behavior between Recruitment and the SOI is
different for positive values of SOI than for negative values of SOI.

The R code for this example is
lag1.plot(soi, 12) # Figure 2.8
lag2.plot(soi, rec, 8) # Figure 2.9

Example 2.9 Regression with Lagged Variables (cont)
In Example 2.3 we regressed Recruitment on lagged SOI,

Rt = β0 + β1St−6 + wt.

However, in Example 2.8, we saw that the relationship is nonlinear and different
when SOI is positive or negative. In this case, we may consider adding a
dummy variable to account for this change. In particular, we fit the model

Rt = β0 + β1St−6 + β2Dt−6 + β3Dt−6 St−6 + wt,

where Dt is a dummy variable that is 0 if St < 0 and 1 otherwise. This means
that

Rt =

{
β0 + β1St−6 + wt if St−6 < 0 ,
(β0 + β2) + (β1 + β3)St−6 + wt if St−6 ≥ 0 .

The result of the fit is given in the R code below. Figure 2.10 shows Rt vs
St−6 with the fitted values of the regression and a lowess fit superimposed. The
piecewise regression fit is similar to the lowess fit, but we note that the residuals
are not white noise (see the code below). This is followed up in Example 3.33.
dummy = ifelse(soi<0, 0, 1)
fish = ts.intersect(rec, soiL6=lag(soi,-6), dL6=lag(dummy,-6), dframe=TRUE)
summary(fit <- lm(rec~ soiL6*dL6, data=fish, na.action=NULL))
Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 74.479 2.865 25.998 < 2e-16
soiL6 -15.358 7.401 -2.075 0.0386
dL6 -1.139 3.711 -0.307 0.7590
soiL6:dL6 -51.244 9.523 -5.381 1.2e-07
---
Residual standard error: 21.84 on 443 degrees of freedom
F-statistic: 99.43 on 3 and 443 DF, p-value: < 2.2e-16
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Fig. 2.11. Data generated by (2.36) [top] and the fitted line superimposed on the data [bottom].

attach(fish) # so we can use the names of the variables in fish
plot(soiL6, rec)
lines(lowess(soiL6, rec), col=4, lwd=2)
points(soiL6, fitted(fit), pch='+', col=2)
tsplot(resid(fit)) # not shown ...
acf(resid(fit)) # ... but obviously not noise

As a final exploratory tool, we discuss assessing periodic behavior in time
series data using regression analysis; this material may be thought of as an
introduction to spectral analysis, which we discuss in detail in Chapter 4. In
Example 1.10, we briefly discussed the problem of identifying cyclic or periodic
signals in time series. A number of the time series we have seen so far exhibit
periodic behavior. For example, the data from the pollution study example shown
in Figure 2.2 exhibit strong yearly cycles. Also, the Johnson & Johnson data
shown in Figure 1.1 make one cycle every year (four quarters) on top of an
increasing trend and the speech data in Figure 1.3 is highly repetitive. The
monthly SOI and Recruitment series in Figure 1.6 show strong yearly cycles, but
hidden in the series are clues to the El Niño cycle.

Example 2.10 Using Regression to Discover a Signal in Noise
In Example 1.10, we generated n = 500 observations from the model

xt = A cos(2πωt + φ) + wt, (2.36)

where ω = 1/50, A = 2, φ = .6π, and σw = 5; the data are shown on the
bottom panel of Figure 1.10. At this point we assume the frequency of
oscillation ω = 1/50 is known, but A and φ are unknown parameters. In this
case the parameters appear in (2.36) in a nonlinear way, so we use a
trigonometric identity5 and write

A cos(2πωt + φ) = β1 cos(2πωt) + β2 sin(2πωt),

where β1 = A cos(φ) and β2 = −A sin(φ).

5 cos(α± β) = cos(α) cos(β)∓ sin(α) sin(β).
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Now the model (2.36) can be written in the usual linear regression form
given by (no intercept term is needed here)

xt = β1 cos(2πt/50) + β2 sin(2πt/50) + wt. (2.37)

Using linear regression, we find β̂1 = −.74(.33), β̂2 = −1.99(.33) with
σ̂w = 5.18; the values in parentheses are the standard errors. We note the actual
values of the coefficients for this example are β1 = 2 cos(.6π) = −.62, and
β2 = −2 sin(.6π) = −1.90. It is clear that we are able to detect the signal in
the noise using regression, even though the signal-to-noise ratio is small.
Figure 2.11 shows data generated by (2.36) with the fitted line superimposed.

To reproduce the analysis and Figure 2.11 in R, use the following:
set.seed(90210) # so you can reproduce these results
x = 2*cos(2*pi*1:500/50 + .6*pi) + rnorm(500,0,5)
z1 = cos(2*pi*1:500/50)
z2 = sin(2*pi*1:500/50)
summary(fit <- lm(x~ 0 + z1 + z2)) # zero to exclude the intercept
Coefficients:
Estimate Std. Error t value Pr(>|t|)

z1 -0.7442 0.3274 -2.273 0.0235
z2 -1.9949 0.3274 -6.093 2.23e-09
Residual standard error: 5.177 on 498 degrees of freedom

par(mfrow=c(2,1))
tsplot(x, margins=.25)
tsplot(x, col=8, margins=.25, ylab=expression(hat(x)))
lines(fitted(fit), col=2)

We will discuss this and related approaches in more detail in Chapter 4.

2.3 Smoothing Time Series

In Section 1.4, we introduced the concept of smoothing a time series, and in
Example 1.7, we discussed using a moving average to smooth white noise. This
method is useful for discovering certain traits in a time series, such as long-term
trend and seasonal components (see Section 4.7 for details). In particular, if xt
represents the observations, then

mt =
k

∑
j=−k

ajxt−j, (2.38)

where aj = a−j ≥ 0 and ∑k
j=−k aj = 1 is a symmetric moving average of the

data.

Example 2.11 Moving Average Smoother
For example, Figure 2.12 shows the monthly SOI series discussed in
Example 1.4 smoothed using (2.38) with weights
a0 = a±1 = · · · = a±5 = 1/12, and a±6 = 1/24; k = 6. This particular
method removes (filters out) the obvious annual temperature cycle and helps
emphasize the El Niño cycle. To reproduce Figure 2.12 in R:
wgts = c(.5, rep(1,11), .5)/12
soif = filter(soi, sides=2, filter=wgts)
tsplot(soi)
lines(soif, lwd=2, col=4)
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Fig. 2.12. The SOI series smoothed using (2.38) with k = 6 (and half-weights at the ends). The insert
shows the shape of the moving average (“boxcar”) kernel [not drawn to scale] described in (2.40).
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Fig. 2.13. Kernel smoother of the SOI. The insert shows the shape of the normal kernel [not drawn to
scale].

Although the moving average smoother does a good job in highlighting the El
Niño effect, it might be considered too choppy. We can obtain a smoother fit using
the normal distribution for the weights, instead of boxcar-type weights of (2.38).

Example 2.12 Kernel Smoothing
Kernel smoothing is a moving average smoother that uses a weight function, or
kernel, to average the observations. Figure 2.13 shows kernel smoothing of the
SOI series, where mt is now

mt =
n

∑
i=1

wi(t)xti , (2.39)

where
wi(t) = K

( t−ti
b
) /

∑n
j=1 K

( t−tj
b
)

(2.40)

are the weights and K(·) is a kernel function. In this example, and typically, the
normal kernel, K(z) = exp(−z2/2), is used.

To implement this in R, use the ksmooth function where a bandwidth can be
chosen. The wider the bandwidth, b, the smoother the result. In our case, we are
smoothing over time, which is of the form t/12 for soi. In Figure 2.13, we used
the value of b = 1 to correspond to approximately smoothing over about a year
The R code for this example is
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Fig. 2.14. Locally weighted scatterplot smoothers (lowess) of the SOI series.

tsplot(soi)
lines(ksmooth(time(soi), soi, "normal", bandwidth=1), lwd=2, col=4)
SOI = ts(soi, freq=1); tsplot(SOI) # the time scale matters (not shown)
lines(ksmooth(time(SOI), SOI, "normal", bandwidth=12), lwd=2, col=4)

Example 2.13 Lowess
Another approach to smoothing is based on k-nearest neighbor regression,
wherein, for k < n, one uses only the data {xt−k/2, . . . , xt, . . . , xt+k/2} to
predict xt via regression, and then sets mt = x̂t.

Lowess is a method of smoothing that is rather complex, but the basic idea
is close to nearest neighbor regression. Figure 2.14 shows smoothing of SOI
using the R function lowess (see Cleveland, 1979). First, a certain proportion
of nearest neighbors to xt are included in a weighting scheme; values closer to
xt in time get more weight. Then, a robust weighted regression is used to
predict xt and obtain the smoothed values mt. The larger the fraction of nearest
neighbors included, the smoother the fit will be. In Figure 2.14, one smoother
uses 5% of the data to obtain an estimate of the El Niño cycle of the data. In
addition, a (negative) trend in SOI would indicate the long-term warming of the
Pacific Ocean. To investigate this, we used a lowess with the default smoother
span of f=2/3 of the data. Figure 2.14 can be reproduced in R as follows.
tsplot(soi)
lines(lowess(soi, f=.05), lwd=2, col=4) # El Nino cycle
lines(lowess(soi), lty=2, lwd=2, col=2) # trend (using default span)

Example 2.14 Smoothing One Series as a Function of Another
Smoothing techniques can also be applied to smoothing a time series as a
function of another time series. In Example 2.2, we discovered a nonlinear
relationship between mortality and temperature. Continuing along these lines,
Figure 2.15 shows a scatterplot of mortality, Mt, and temperature, Tt, along
with Mt smoothed as a function of Tt using lowess Note that mortality
increases at extreme temperatures, but in an asymmetric way; mortality is
higher at colder temperatures than at hotter temperatures. The minimum
mortality rate seems to occur at approximately 83◦ F. Figure 2.15 can be
reproduced in R as follows using the defaults.
plot(tempr, cmort, xlab="Temperature", ylab="Mortality")
lines(lowess(tempr, cmort))
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Fig. 2.15. Smooth of mortality as a function of temperature using lowess.

Example 2.15 Classical Structural Modeling
A classical approach to time series analysis is to decompose data into
components labeled trend (Tt), seasonal (St), irregular or noise (Nt). If we let
xt denote the data (or perhaps the data transformed to induce
homoscedasticity), we can then sometimes write

xt = Tt + St + Nt.

Of course, not all time series data fit into such a paradigm and the
decomposition may not be unique. Sometimes an additional cyclic component,
say Ct, such as a business cycle is added to the model.

Figure 2.16 shows the result of the decomposition using loess on the
quarterly occupancy rate of Hawaiian hotels from 2002 to 2016. The data are in
astsa, but only in versions higher than 1.7.1 (see the website for the text for
instructions on obtaining the latest version of the package).

R provides a few scripts to fit the decomposition. The script decompose uses
moving averages as in Example 2.11. Another script, stl, uses loess to obtain
each component and is similar to the approach used in Example 2.13. To use
stl, the seasonal smoothing method must be specified. That is, specify either
the character string "periodic" or the span of the loess window for seasonal
extraction. The span should be odd and at least 7 (there is no default). By using
a seasonal window, we are allowing St ≈ St−4 rather than St = St−4, which is
forced by specifying a periodic seasonal component; see the code below for
more details.

The code for producing various graphs similar to Figure 2.16 is given
below. Note that the seasonal component is very regular showing a 2% to 4%
gain in the first and third quarters, while showing a 2% to 4% loss in the second
and fourth quarters. The trend component perhaps more like a business cycle
than what may be considered a trend. As previously implied, the components
are not well defined and the decomposition is not unique; one person’s trend
may be another person’s business cycle.
x = window(hor, start=2002) # data set in astsa version 1.7.1+
plot(decompose(x)) # not shown
plot(stl(x, s.window='per')) # not shown
plot(stl(x, s.window=15))
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Fig. 2.16. Structural model of the Hawaiian quarterly haole occupancy rate.

Problems

2.1 (Structural Model) For the Johnson & Johnson data, say yt, shown in
Figure 1.1, let xt = log(yt). In this problem, we are going to fit a special type of
structural model, xt = Tt + St + Nt where Tt is a trend component, St is a
seasonal component, and Nt is noise. In our case, time t is in quarters
(1960.00, 1960.25, . . . ) so one unit of time is a year.

(a) Fit the regression model

xt = βt︸︷︷︸
trend

+ α1Q1(t) + α2Q2(t) + α3Q3(t) + α4Q4(t)︸ ︷︷ ︸
seasonal

+ wt︸︷︷︸
noise

where Qi(t) = 1 if time t corresponds to quarter i = 1, 2, 3, 4, and zero
otherwise. The Qi(t)’s are called indicator variables. We will assume for now
that wt is a Gaussian white noise sequence. Hint: Detailed code is given in
Appendix R, near the end of Section R.5.

(b) If the model is correct, what is the estimated average annual increase in the
logged earnings per share?

(c) If the model is correct, does the average logged earnings rate increase or
decrease from the third quarter to the fourth quarter? And, by what percentage
does it increase or decrease?

(d) What happens if you include an intercept term in the model in (a)? Explain
why there was a problem.
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(e) Graph the data, xt, and superimpose the fitted values, say x̂t, on the graph.
Examine the residuals, xt − x̂t, and state your conclusions. Does it appear
that the model fits the data well (do the residuals look white)?

2.2 For the mortality data examined in Example 2.2:

(a) Add another component to the regression in (2.21) that accounts for the
particulate count four weeks prior; that is, add Pt−4 to the regression in
(2.21). State your conclusion.

(b) Using AIC and BIC, is the model in (a) an improvement over the final model
in Example 2.2?

2.3 In this problem, we explore the difference between a random walk and a trend
stationary process.

(a) Generate four series that are random walk with drift, (1.4), of length n = 100
with δ = .01 and σw = 1. Call the data xt for t = 1, . . . , 100. Fit the
regression xt = βt + wt using least squares. Plot the data, the true mean
function (i.e., µt = .01 t) and the fitted line, x̂t = β̂ t, on the same graph.
Hint: The following R code may be useful.
par(mfrow=c(2,2), mar=c(2.5,2.5,0,0)+.5, mgp=c(1.6,.6,0)) # set up
for (i in 1:4){
x = ts(cumsum(rnorm(100,.01,1))) # data
regx = lm(x~0+time(x), na.action=NULL) # regression
tsplot(x, ylab='Random Walk w Drift') # plots
abline(a=0, b=.01, col=2, lty=2) # true mean (red - dashed)
abline(regx, col=4) } # fitted line (blue - straight)

(b) Generate four series of length n = 100 that are linear trend plus noise, say
yt = .01 t + wt, where t and wt are as in part (a). Fit the regression
yt = βt + wt using least squares. Plot the data, the true mean function (i.e.,
µt = .01 t) and the fitted line, ŷt = β̂ t, on the same graph.

(c) Comment (what did you learn from this assignment).

2.4 Consider a process consisting of a linear trend with an additive noise term
consisting of independent random variables wt with zero means and variances
σ2

w, that is,
xt = β0 + β1t + wt,

where β0, β1 are fixed constants.

(a) Prove xt is nonstationary.
(b) Prove that the first difference series ∇xt = xt − xt−1 is stationary by finding

its mean and autocovariance function.
(c) Repeat part (b) if wt is replaced by a general stationary process, say yt, with

mean function µy and autocovariance function γy(h). [Hint: See (2.28).]

2.5 Show (2.27) is stationary.

2.6 The glacial varve record plotted in Figure 2.7 exhibits some nonstationarity
that can be improved by transforming to logarithms and some additional
nonstationarity that can be corrected by differencing the logarithms.
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(a) Argue that the glacial varves series, say xt, exhibits heteroscedasticity by
computing the sample variance over the first half and the second half of the
data. Argue that the transformation yt = log xt stabilizes the variance over
the series. Plot the histograms of xt and yt to see whether the approximation
to normality is improved by transforming the data.

(b) Plot the series yt. Do any time intervals, of the order 100 years, exist where
one can observe behavior comparable to that observed in the global
temperature records in Figure 1.3?

(c) Examine the sample ACF of yt and comment.
(d) Compute the difference ut = yt − yt−1, examine its time plot and sample

ACF, and argue that differencing the logged varve data produces a reasonably
stationary series. Can you think of a practical interpretation for ut? Hint: For
|p| close to zero, log(1 + p) ≈ p; let p = (xt − xt−1)/xt−1.

2.7 Use the three different smoothing techniques described in Example 2.11,
Example 2.12, and Example 2.13, to estimate the trend in the global temperature
series displayed in Figure 1.3. Comment.

2.8 As in Problem 2.1, let yt be the raw Johnson & Johnson series shown in
Figure 1.1, and let xt = log(yt). Use each of the techniques mentioned in
Example 2.15 to decompose the logged data as xt = Tt + St + Nt and describe
the results. If you did Problem 2.1, compare the results of that problem with those
found in this problem.



Chapter 3
ARIMA Models

3.1 Introduction

Classical regression is often insufficient for explaining all of the interesting
dynamics of a time series. For example, the ACF of the residuals of the simple
linear regression fit to the price of chicken data (see Example 2.4) reveals
additional structure in the data that regression did not capture. Instead, the
introduction of correlation as a phenomenon that may be generated through
lagged linear relations leads to proposing the autoregressive (AR) and moving
average (MA) models. Often, these models are combined to form the
autoregressive moving average (ARMA) model. Adding nonstationary models to
the mix leads to the autoregressive integrated moving average (ARIMA) model
popularized in the landmark work by Box and Jenkins (1970). Seasonal data,
such as the data discussed in Example 1.1 and Example 1.4 lead to seasonal
autoregressive integrated moving average (SARIMA) models. The Box–Jenkins
method for identifying a plausible models is given in this chapter along with
techniques for parameter estimation and forecasting.

3.2 Autoregressive Moving Average Models

Autoregressive models are based on the idea that the current value of the series,
xt, can be explained by p past values, xt−1, xt−2, . . . , xt−p. As a typical case,
recall Example 1.8 in which data were generated using the model

xt = xt−1 − .90xt−2 + wt,

where wt is white Gaussian noise with σ2
w = 1. We have now assumed the

current value is a particular linear function of past values. The regularity that
persists in Figure 1.8 gives an indication that forecasting for such a model might
be a distinct possibility, say, through some version such as

xn
n+1 = xn − .90xn−1,
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where the quantity on the left-hand side denotes the forecast at the next period
n + 1 based on the observed data, x1, x2, . . . , xn. For example, the lagged
scatterplot matrix for the Southern Oscillation Index (SOI), shown in Figure 2.8,
gives a distinct indication that the values at lags 1, 2, and 12, are linearly
associated with the current value. We will make this notion more precise in our
discussion of forecasting.

Definition 3.1 An autoregressive model of order p, abbreviated AR(p), is of the
form

xt = φ1xt−1 + φ2xt−2 + · · ·+ φpxt−p + wt, (3.1)

where xt is stationary, and φ1, φ2, . . . , φp are constants (φp 6= 0). Although it is
not necessary yet, we assume that wt is a Gaussian white noise series with mean
zero and variance σ2

w, unless otherwise stated. The mean of xt in (3.1) is zero. If
the mean, µ, of xt is not zero, replace xt by xt − µ in (3.1),

xt − µ = φ1(xt−1 − µ) + φ2(xt−2 − µ) + · · ·+ φp(xt−p − µ) + wt,

or write
xt = α + φ1xt−1 + φ2xt−2 + · · ·+ φpxt−p + wt, (3.2)

where α = µ(1− φ1 − · · · − φp).

We note that (3.2) is similar to the regression model of Section 2.1, and hence
the term auto (or self) regression. Some technical difficulties develop from
applying that model because the regressors, xt−1, . . . , xt−p, are random
components, whereas in regression, the regressors are assumed to be fixed. A
useful form follows by using the backshift operator (2.30) to write the AR(p)
model, (3.1), as

(1− φ1B− φ2B2 − · · · − φpBp)xt = wt, (3.3)

or even more concisely as
φ(B)xt = wt. (3.4)

Example 3.1 The AR(1) Model
Consider the first-order model, AR(1), given by xt = φxt−1 + wt. Provided
that |φ| < 1 we can represent an AR(1) model as a linear process given by1

xt =
∞

∑
j=0

φjwt−j. (3.5)

Representation (3.5) is called the causal stationary solution of the model. The
term causal refers to the fact that xt does not depend on the future. In fact, by
simple substitution,

∞

∑
j=0

φjwt−j︸ ︷︷ ︸
xt

= φ
( ∞

∑
k=0

φkwt−1−k︸ ︷︷ ︸
xt−1

)
+ wt.

1 Iterate backward, xt = φxt−1 + wt = φ(φxt−2 + wt−1) + wt = φ2xt−2 + φwt−1 + wt =
· · · = φkxt−k + ∑k−1

j=0 φjwt−j. If |φ| < 1 and supt E(x2
t ) < ∞, then

limk→∞ E
(

xt −∑k−1
j=0 φjwt−j

)2
= limk→∞ φ2kE

(
x2

t−k
)
= 0.
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Using (3.5), it is easy to see that the AR(1) process is stationary with mean

E(xt) =
∞

∑
j=0

φjE(wt−j) = 0,

and autocovariance function (h ≥ 0),

γ(h) = cov(xt+h, xt) = E

[(
∞

∑
j=0

φjwt+h−j

)(
∞

∑
k=0

φkwt−k

)]

= E
[(

wt+h + · · ·+ φhwt + φh+1wt−1 + · · ·
)(

wt + φwt−1 + · · ·
)]

= σ2
w

∞

∑
j=0

φh+jφj = σ2
wφh

∞

∑
j=0

φ2j =
σ2

wφh

1− φ2 , h ≥ 0. (3.6)

Recall that γ(h) = γ(−h), so we will only exhibit the autocovariance function
for h ≥ 0. From (3.6), the ACF of an AR(1) is

ρ(h) =
γ(h)
γ(0)

= φh, h ≥ 0. (3.7)

Example 3.2 The Sample Path of an AR(1) Process
Figure 3.1 shows a time plot of two AR(1) processes, one with φ = .9 and one
with φ = −.9; in both cases, σ2

w = 1. In the first case, ρ(h) = .9h, for h ≥ 0,
so observations close together in time are positively correlated with each other.
This result means that observations at contiguous time points will tend to be
close in value to each other; this fact shows up in the top of Figure 3.1 as a very
smooth sample path for xt. Now, contrast this with the case in which φ = −.9,
so that ρ(h) = (−.9)h, for h ≥ 0. This result means that observations at
contiguous time points are negatively correlated but observations two time
points apart are positively correlated. This fact shows up in the bottom of
Figure 3.1, where, for example, if an observation, xt, is positive, the next
observation, xt+1, is typically negative, and the next observation, xt+2, is
typically positive. Thus, in this case, the sample path is very choppy. The
following R code can be used to obtain a figure similar to Figure 3.1:
par(mfrow=c(2,1))
tsplot(arima.sim(list(order=c(1,0,0), ar=.9), n=100), ylab="x",

main=(expression(AR(1)~~~phi==+.9)))
tsplot(arima.sim(list(order=c(1,0,0), ar=-.9), n=100), ylab="x",

main=(expression(AR(1)~~~phi==-.9)))

As an alternative to the autoregressive representation in which the xt on the
left-hand side of the equation are assumed to be combined linearly, the moving
average model of order q, abbreviated as MA(q), assumes the white noise wt on
the right-hand side of the defining equation are combined linearly to form the
observed data.

Definition 3.2 The moving average model of order q, or MA(q) model, is
defined to be

xt = wt + θ1wt−1 + θ2wt−2 + · · ·+ θqwt−q, (3.8)
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Fig. 3.1. Simulated AR(1) models: φ = .9 (top); φ = −.9 (bottom).

where there are q lags in the moving average and θ1, θ2, . . . , θq (θq 6= 0) are
parameters.2 Although it is not necessary yet, we assume that wt is a Gaussian
white noise series with mean zero and variance σ2

w, unless otherwise stated.

As in the AR(p) case, the MA(q) model may be written as

xt = (1 + θ1B + θ2B2 + · · ·+ θqBq)wt, (3.9)

or more concisely as
xt = θ(B)wt, (3.10)

Unlike the autoregressive process, the moving average process is stationary for
any values of the parameters θ1, . . . , θq.

Example 3.3 The MA(1) Process
Consider the MA(1) model xt = wt + θwt−1. Then, E(xt) = 0,

γ(h) =


(1 + θ2)σ2

w h = 0,
θσ2

w h = 1,
0 h > 1,

and the ACF is

ρ(h) =


θ

(1+θ2)
h = 1,

0 h > 1.

Note |ρ(1)| ≤ 1/2 for all values of θ (Problem 3.1). Also, xt is correlated with
xt−1, but not with xt−2, xt−3, . . . . Contrast this with the case of the AR(1)
model in which the correlation between xt and xt−k is never zero. When
θ = .9, for example, xt and xt−1 are positively correlated, and ρ(1) = .497.

2 Some texts and software packages write the MA model with negative coefficients; that is, xt =
wt − θ1wt−1 − θ2wt−2 − · · · − θqwt−q.
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Fig. 3.2. Simulated MA(1) models: θ = .9 (top); θ = −.9 (bottom).

When θ = −.9, xt and xt−1 are negatively correlated, ρ(1) = −.497.
Figure 3.2 shows a time plot of these two processes with σ2

w = 1. The series for
which θ = .9 is smoother than the series for which θ = −.9. A figure similar to
Figure 3.2 can be created in R as follows:
par(mfrow = c(2,1))
tsplot(arima.sim(list(order=c(0,0,1), ma=.9), n=100), ylab="x",

main=(expression(MA(1)~~~theta==+.5)))
tsplot(arima.sim(list(order=c(0,0,1), ma=-.9), n=100), ylab="x",

main=(expression(MA(1)~~~theta==-.5)))

We now proceed with the general development of mixed autoregressive
moving average (ARMA) models for stationary time series.

Definition 3.3 A time series {xt; t = 0,±1,±2, . . .} is ARMA(p, q) if it is
stationary and

xt = φ1xt−1 + · · ·+ φpxt−p + wt + θ1wt−1 + · · ·+ θqwt−q, (3.11)

with φp 6= 0, θq 6= 0, and σ2
w > 0. The parameters p and q are called the

autoregressive and the moving average orders, respectively. If xt has a nonzero
mean µ, we set α = µ(1− φ1 − · · · − φp) and write the model as

xt = α + φ1xt−1 + · · ·+ φpxt−p + wt + θ1wt−1 + · · ·+ θqwt−q. (3.12)

Although it is not necessary yet, we assume that wt is a Gaussian white noise
series with mean zero and variance σ2

w, unless otherwise stated.

The ARMA model may be seen as a regression of the present outcome (xt)
on the past outcomes (xt−1, . . . , xt−p), with correlated errors. That is,

xt = β0 + β1xt−1 + · · ·+ βpxt−p + εt,

where εt = wt + θ1wt−1 + · · ·+ θqwt−q, although we call the regression
parameters φ instead of β.
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As previously noted, when q = 0, the model is called an autoregressive
model of order p, AR(p), and when p = 0, the model is called a moving average
model of order q, MA(q). Using (3.3) and (3.9), the ARMA(p, q) model in (3.11)
may be written in concise form as

φ(B)xt = θ(B)wt. (3.13)

The concise form of an ARMA model points to a potential problem in that we
can unnecessarily complicate the model by multiplying both sides by another
operator, say

η(B)φ(B)xt = η(B)θ(B)wt ,

without changing the dynamics. Consider the following example.

Example 3.4 Parameter Redundancy
Consider a white noise process xt = wt. Equivalently, we can write this as
.5xt−1 = .5wt−1 by shifting back one unit of time and multiplying by .5. Now,
subtract the two representations to obtain

xt − .5xt−1 = wt − .5wt−1,

or
xt = .5xt−1 − .5wt−1 + wt, (3.14)

which looks like an ARMA(1, 1) model. Of course, xt is still white noise;
nothing has changed in this regard [i.e., xt = wt is the solution to (3.14)], but
we have hidden the fact that xt is white noise because of the parameter
redundancy or over-parameterization. Write the parameter redundant model in
operator form,

(1− .5B)xt = (1− .5B)wt.

Apply the operator φ(B)−1 = (1− .5B)−1 to both sides to obtain

xt = (1− .5B)−1(1− .5B)xt = (1− .5B)−1(1− .5B)wt = wt,

which is the original model.

Example 3.4 points out the need to be careful when fitting ARMA models to
data. For example, if a process is truly white noise, it is possible to fit a significant
ARMA(k, k) model to the data. That is, it is possible to obtain a seemingly
complicated dynamic description of simple white noise. Consider the following
example.

Example 3.5 Parameter Redundancy (cont)
Although we have not yet discussed estimation, we present the following
demonstration of the problem. We generated 150 iid normals and then fit an
ARMA(1, 1) to the data. Note that φ̂ = −.96 and θ̂ = .95, and both are
significant. Below is the R code (note that the estimate called “intercept” is
really the estimate of the mean).
set.seed(8675309) # Jenny, I got your number
x = rnorm(150, mean=5) # generate iid N(5,1)s
arima(x, order=c(1,0,1)) # estimation
Coefficients:

ar1 ma1 intercept<= misnomer
-0.9595 0.9527 5.0462

s.e. 0.1688 0.1750 0.0727
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Thus, forgetting the mean estimate, the fitted model looks like

(1 + .96B)xt = (1 + .95B)wt ,

which we should recognize as an over-parametrized model.

Henceforth, we will require an ARMA model to have no common factors, so
that it is reduced to its simplest form. In addition, for the purposes of estimation
and forecasting, we will require an ARMA model to be causal (or
non-anticipative) and invertible as defined below.

Definition 3.4 Causality and Invertibility
The causal form of the model is given by

xt = φ(B)−1θ(B)wt = ψ(B)wt =
∞

∑
j=0

ψjwt−j, (3.15)

where ψ(B) = ∑∞
j=0 ψjBj (ψ0 = 1). Note that the parameters ψj may be

obtained by matching coefficients of B in φ(B)ψ(B) = θ(B).
The invertible form of the model is given by

wt = θ(B)−1φ(B)xt = π(B)xt =
∞

∑
j=0

πjxt−j. (3.16)

where π(B) = ∑∞
j=0 πjBj (π0 = 1), assuming the representations are

well-defined. Likewise, the parameters πj may be obtained by matching
coefficients of B in φ(B) = π(B)θ(B).

We note that it is not always possible to solve these relationships and some
restrictions apply, as follows.

Property 3.1 Causality and Invertibility (existence)
Let

φ(z) = 1− φ1z− · · · − φpzp and θ(z) = 1 + θ1z + · · ·+ θqzq

be the AR and MA polynomials obtained by replacing the backshift operator B in
(3.3) and (3.9) by a complex number z.

An ARMA(p, q) model is causal if and only if φ(z) 6= 0 for |z| ≤ 1. The
coefficients of the linear process given in (3.15) can be determined by solving
(ψ0 = 1)

ψ(z) =
∞

∑
j=0

ψjzj =
θ(z)
φ(z)

, |z| ≤ 1.∗

An ARMA(p, q) model is invertible if and only if θ(z) 6= 0 for |z| ≤ 1. The
coefficients πj of π(B) given in (3.16) can be determined by solving (π0 = 1)

π(z) =
∞

∑
j=0

πjzj =
φ(z)
θ(z)

, |z| ≤ 1.†

We demonstrate the property in the following example.

* φ(z) can’t be zero in here. . . you wouldn’t want to divide by zero, would you?
† θ(z) can’t be zero in here.
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Example 3.6 Parameter Redundancy, Causality, Invertibility
Consider the process

xt = .4xt−1 + .45xt−2 + wt + wt−1 + .25wt−2,

or, in operator form,

(1− .4B− .45B2)xt = (1 + B + .25B2)wt.

At first, xt appears to be an ARMA(2, 2) process. But notice that

φ(B) = 1− .4B− .45B2 = (1 + .5B)(1− .9B)

and
θ(B) = (1 + B + .25B2) = (1 + .5B)2

have a common factor that can be canceled. After cancellation, the operators
are φ(B) = (1− .9B) and θ(B) = (1 + .5B), so the model is an ARMA(1, 1)
model, (1− .9B)xt = (1 + .5B)wt, or

xt = .9xt−1 + .5wt−1 + wt. (3.17)

The model is causal because φ(z) = (1− .9z) = 0 when z = 10/9, which
is outside the unit circle. The model is also invertible because the root of
θ(z) = (1 + .5z) is z = −2, which is outside the unit circle.

To write the model as a linear process, we can obtain the ψ-weights using
Property 3.1, φ(z)ψ(z) = θ(z), or

(1− .9z)(1 + ψ1z + ψ2z2 + · · ·+ ψjzj + · · · ) = 1 + .5z.

Rearranging, we get

1 + (ψ1 − .9)z + (ψ2 − .9ψ1)z2 + · · ·+ (ψj − .9ψj−1)zj + · · · = 1 + .5z.

The coefficients of z on the left and right sides must be the same, so we get
ψ1 − .9 = .5 or ψ1 = 1.4, and ψj − .9ψj−1 = 0 for j > 1. Thus,
ψj = 1.4(.9)j−1 for j ≥ 1 and (3.17) can be written as

xt = wt + 1.4 ∑∞
j=1 .9j−1wt−j.

The values of ψj may be calculated in R as follows:
ARMAtoMA(ar = .9, ma = .5, 10) # first 10 psi-weights
[1] 1.40 1.26 1.13 1.02 0.92 0.83 0.74 0.67 0.60 0.54

The invertible representation using Property 3.1 is obtained by matching
coefficients in θ(z)π(z) = φ(z),

(1 + .5z)(1 + π1z + π2z2 + π3z3 + · · · ) = 1− .9z.

In this case, the π-weights are given by πj = (−1)j 1.4 (.5)j−1, for j ≥ 1, and
hence, we can also write (3.17) as

xt = 1.4 ∑∞
j=1(−.5)j−1xt−j + wt.

The values of πj may be calculated in R as follows by reversing the roles of wt
and xt; i.e., write the model as wt = −.5wt−1 + xt − .9xt−1:
ARMAtoMA(ar = -.5, ma = -.9, 10) # first 10 pi-weights
[1] -1.400 .700 -.350 .175 -.087 .044 -.022 .011 -.006 .003
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Fig. 3.3. Causal region for an AR(2) in terms of the parameters.

Example 3.7 Causal Conditions for an AR(2) Process
For an AR(1) model, (1− φB)xt = wt, to be causal, we must have φ(z) 6= 0
for |z| ≤ 1. If we solve φ(z) = 1− φz = 0, we find that the root (or zero)
occurs at z0 = 1/φ, so that |z0| > 1 only if |φ| < 1.

For example, the AR(2) model, (1− φ1B− φ2B2)xt = wt, is causal when
the two roots of φ(z) = 1− φ1z− φ2z2 lie outside of the unit circle. That is, if
z1 and z2 are the roots, then |z1| > 1 and |z2| > 1. Using the quadratic
formula, this requirement can be written as∣∣∣∣∣∣

φ1 ±
√

φ2
1 + 4φ2

−2φ2

∣∣∣∣∣∣ > 1.

The roots of φ(z) may be real and distinct, real and equal, or a complex
conjugate pair. In terms of the coefficients, the equivalent condition is

φ1 + φ2 < 1, φ2 − φ1 < 1, and |φ2| < 1. (3.18)

This causality condition specifies a triangular region in the parameter space;
see Figure 3.3.

3.3 Autocorrelation and Partial Autocorrelation

We begin by exhibiting the ACF of an MA(q) process.

Example 3.8 ACF of an MA(q)
The model is xt = θ(B)wt, where θ(B) = 1 + θ1B + · · ·+ θqBq. Because xt
is a finite linear combination of white noise terms, the process is stationary with
mean

E(xt) =
q

∑
j=0

θjE(wt−j) = 0,

where we have written θ0 = 1, and with autocovariance function
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γ(h) = cov (xt+h, xt) = cov
( q

∑
j=0

θjwt+h−j,
q

∑
k=0

θkwt−k

)

=

{
σ2

w ∑
q−h
j=0 θjθj+h, 0 ≤ h ≤ q

0 h > q.
(3.19)

Recall that γ(h) = γ(−h), so we will only display the values for h ≥ 0. The
cutting off of γ(h) after q lags is the signature of the MA(q) model. Dividing
(3.19) by γ(0) yields the ACF of an MA(q):

ρ(h) =


∑

q−h
j=0 θjθj+h

1 + θ2
1 + · · ·+ θ2

q
1 ≤ h ≤ q

0 h > q.

(3.20)

Example 3.9 ACF of an AR(p) and ARMA(p, q)
For an AR(p) or ARMA(p, q) model, φ(B)xt = θ(B)wt, write it as

xt = φ(B)−1θ(B)wt = ψ(B)wt,

or

xt =
∞

∑
j=0

ψjwt−j. (3.21)

It follows immediately that E(xt) = 0. Also, the autocovariance function of xt
can be written as

γ(h) = cov(xt+h, xt) = σ2
w

∞

∑
j=0

ψjψj+h, h ≥ 0, (3.22)

so that the ACF is given by

ρ(h) =
∑∞

j=0 ψjψj+h

∑∞
j=0 ψ2

j
, h ≥ 0. (3.23)

Unlike the MA(q), the ACF of an AR(p) or an ARMA(p, q) does not cut off
at any lag, so using the ACF to help identify the order of an AR or ARMA is
difficult. Also, (3.23) is not appealing in that it provides little information about
the appearance of the ACF of various models.

Example 3.10 The ACF of an AR(2) Process
Suppose xt = φ1xt−1 + φ2xt−2 + wt is a causal AR(2) process. Multiply each
side of the model by xt−h for h > 0, and take expectation:

E(xtxt−h) = φ1E(xt−1xt−h) + φ2E(xt−2xt−h) + E(wtxt−h).

The result is

γ(h) = φ1γ(h− 1) + φ2γ(h− 2), h = 1, 2, . . . . (3.24)
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In (3.24), we used the fact that E(xt) = 0 and for h > 0, E(wt xt−h) = 0
because, by causality, xt−h does not depend on future errors. Divide (3.24)
through by γ(0) to obtain a recursion for the ACF:

ρ(h)− φ1ρ(h− 1)− φ2ρ(h− 2) = 0, h = 1, 2, . . . . (3.25)

The initial conditions are ρ(0) = 1 and ρ(−1) = φ1/(1− φ2), which is
obtained by evaluating (3.25) for h = 1 and noting that ρ(1) = ρ(−1).

Equations such as (3.25) are called difference equations, and the solutions
are fairly simple expressions. First, the polynomial associated with (3.25) is

φ(z) = 1− φ1z− φ2z2,

where the power of z is the power of the backshift, B; i.e., (3.25) is
(1− φ1B− φ2B2)ρ(h) = 0. In general, z is a complex number. Let z1 and z2
be the roots (or zeros) of the associated polynomial, i.e., φ(z1) = φ(z2) = 0.
For a causal model, the roots are outside the unit circle: |z1| > 1 and |z2| > 1.
Now, consider the solutions:
(i) When z1 and z2 are distinct, then

ρ(h) = c1z−h
1 + c2z−h

2 ,

so ρ(h)→ 0 exponentially fast as h→ ∞. The constants c1 and c2 are
obtained by solving for them using the initial conditions given above. For
example, when h = 0, we have 1 = c1 + c2, and so on.

(ii) When z1 = z2 (= z0) are equal (and hence real), then

ρ(h) = z−h
0 (c1 + c2h),

so ρ(h)→ 0 exponentially fast as h→ ∞.
In case (i) with complex roots, z2 = z̄1 are a complex conjugate pair, and

c2 = c̄1 [because ρ(h) is real], and

ρ(h) = c1z−h
1 + c̄1z̄−h

1 .

Write c1 and z1 in polar coordinates, for example, z1 = |z1|eiθ , where θ is the
angle whose tangent is the ratio of the imaginary part and the real part of z1
(sometimes called arg(z1); the range of θ is [−π, π]). Then, using the fact that
eiα + e−iα = 2 cos(α), the solution has the form

ρ(h) = a|z1|−h cos(hθ + b),

where a and b are determined by the initial conditions. Again, ρ(h) dampens to
zero exponentially fast as h→ ∞, but it does so in a sinusoidal fashion. The
implication of this result is shown in Example 3.11.

Example 3.11 An AR(2) with Complex Roots
Figure 3.4 shows n = 144 observations from the AR(2) model

xt = 1.5xt−1 − .75xt−2 + wt,
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Fig. 3.4. Simulated AR(2) model, n = 144 with φ1 = 1.5 and φ2 = −.75.

with σ2
w = 1, and with complex roots chosen so the process exhibits

pseudo-cyclic behavior at the rate of one cycle every 12 time points. The
autoregressive polynomial for this model is φ(z) = 1− 1.5z + .75z2. The
roots of φ(z) are 1± i/

√
3, and θ = tan−1(1/

√
3) = 2π/12 radians per unit

time. To convert the angle to cycles per unit time, divide by 2π to get 1/12
cycles per unit time. The ACF for this model is shown in Figure 3.5. To
calculate the roots of the polynomial and solve for arg:
z = c(1,-1.5,.75) # coefficients of the polynomial
(a = polyroot(z)[1]) # print one root: 1+0.57735i = 1 + i/sqrt(3)
arg = Arg(a)/(2*pi) # arg in cycles/pt
1/arg # = 12, the pseudo period

To reproduce Figure 3.4:
set.seed(8675309)
ar2 = arima.sim(list(order=c(2,0,0), ar=c(1.5,-.75)), n = 144)
plot(ar2, axes=FALSE, xlab="Time")
axis(2); axis(1, at=seq(0,144,by=12)); box()
abline(v=seq(0,144,by=12), lty=2)

To calculate and display the ACF for this model:
ACF = ARMAacf(ar=c(1.5,-.75), ma=0, 50)
plot(ACF, type="h", xlab="lag")
abline(h=0)

In general, the behavior of the ACF of an AR(p) or an ARMA(p, q) when
p ≥ 2 will be similar to the AR(2) case. When p = 1, the behavior is like the
AR(1) case.

Example 3.12 The ACF of an ARMA(1, 1)
Consider the ARMA(1, 1) process xt = φxt−1 + θwt−1 + wt, where |φ| < 1.
Using the theory of difference equations, we can show that the ACF is given by

ρ(h) =
(1 + θφ)(φ + θ)

1 + 2θφ + θ2 φh−1, h ≥ 1. (3.26)

Notice that the general pattern of ρ(h) in (3.26) is not different from that of
an AR(1) given in (3.7). Hence, it is unlikely that we will be able to tell the
difference between an ARMA(1,1) and an AR(1) based solely on an ACF
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estimated from a sample. This consideration will lead us to the partial
autocorrelation function.

The Partial Autocorrelation Function (PACF)

In (3.20), we saw that for MA(q) models, the ACF will be zero for lags greater
than q. Moreover, because θq 6= 0, the ACF will not be zero at lag q. Thus, the
ACF provides a considerable amount of information about the order of the
dependence when the process is a moving average process.

If the process, however, is ARMA or AR, the ACF alone tells us little about
the orders of dependence. Hence, it is worthwhile pursuing a function that will
behave like the ACF of MA models, but for AR models, namely, the partial
autocorrelation function (PACF).

Recall that if X, Y, and Z are random variables, then the partial correlation
between X and Y given Z is obtained by regressing X on Z to obtain the
predictor X̂, regressing Y on Z to obtain Ŷ, and then calculating

ρXY|Z = corr{X− X̂, Y− Ŷ}.

The idea is that ρXY|Z measures the correlation between X and Y with the linear
effect of Z removed (or partialled out). If the variables are multivariate normal,
then this definition coincides with ρXY|Z = corr(X, Y | Z).

To motivate the idea of partial autocorrelation, consider a causal AR(1)
model, xt = φxt−1 + wt. Then,

γx(2) = cov(xt, xt−2) = cov(φxt−1 + wt, xt−2)

= cov(φ2xt−2 + φwt−1 + wt, xt−2) = φ2γx(0).

This result follows from causality because xt−2 involves {wt−2, wt−3, . . .},
which are all uncorrelated with wt and wt−1. The correlation between xt and
xt−2 is not zero, as it would be for an MA(1), because xt is dependent on xt−2
through xt−1. Suppose we break this chain of dependence by removing (or
partialling out) the effect of xt−1. That is, we consider the correlation between
xt − φxt−1 and xt−2 − φxt−1, because it is the correlation between xt and xt−2
with the linear dependence of each on xt−1 removed. In this way, we have broken
the dependence chain between xt and xt−2. In fact,

cov(xt − φxt−1, xt−2 − φxt−1) = cov(wt, xt−2 − φxt−1) = 0.

Hence, the tool we need is partial autocorrelation, which is the correlation
between xs and xt with the linear effect of everything “in the middle” removed.

Definition 3.5 The partial autocorrelation function (PACF) of a stationary
process, xt, denoted φhh, for h = 1, 2, . . . , is

φ11 = corr(x1, x0) = ρ(1) (3.27)

and
φhh = corr(xh − x̂h, x0 − x̂0), h ≥ 2, (3.28)

where x̂h is the regression of xh on {x1, x2, . . . , xh−1} and x̂0 is the regression of
x0 on {x1, x2, . . . , xh−1}.
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Thus, due to the stationarity, the PACF, φhh, is the correlation between xt+h
and xt with the linear dependence of everything between them, namely
{xt+1, . . . , xt+h−1}, on each, removed.

It is not necessary to actually run regressions to compute the PACF because
they values can be computed recursively based on what is known as the
Durbin–Levinson algorithm due to Levinson (1947) and Durbin (1960).

Example 3.13 The PACF of an AR(p)
The model can be written as

xt+h =
p

∑
j=1

φjxt+h−j + wt+h,

where the roots of φ(z) are outside the unit circle. When h > p, the regression
of xt+h on {xt+1, . . . , xt+h−1}, is

x̂t+h =
p

∑
j=1

φjxt+h−j.

Although we have not proved this result, it should be obvious that it is so. Thus,
when h > p,

φhh = corr(xt+h − x̂t+h, xt − x̂t) = corr(wt+h, xt − x̂t) = 0,

because, by causality, xt − x̂t depends only on {wt+h−1, wt+h−2, . . .}. When
h ≤ p, φpp is not zero, and φ11, . . . , φp−1,p−1 are not necessarily zero. We will
see later that, in fact, φpp = φp. Figure 3.5 shows the ACF and the PACF of the
AR(2) model presented in Example 3.11. To reproduce Figure 3.5 in R, use the
following commands:
ACF = ARMAacf(ar=c(1.5,-.75), ma=0, 24)[-1]
PACF = ARMAacf(ar=c(1.5,-.75), ma=0, 24, pacf=TRUE)
par(mfrow=c(1,2))
tsplot(ACF, type="h", xlab="lag", ylim=c(-.8,1))
abline(h=0)
tsplot(PACF, type="h", xlab="lag", ylim=c(-.8,1))
abline(h=0)

We also have the following large sample result for the PACF, which may be
compared to the similar result for the ACF given in Property 1.2.

Property 3.2 Large Sample Distribution of the PACF
If the time series is a causal AR(p) process and the sample size n is large,

then
√

n φ̂hh is approximately N(0, 1), for h > p. This result also holds for
p = 0, wherein the process is white noise.

Example 3.14 The PACF of an MA(q)
For an MA(q), we can write xt = −∑∞

j=1 πjxt−j + wt. Moreover, no finite
representation exists. From this result, it should be apparent that the PACF will
never cut off, as in the case of an AR(p). For an MA(1), xt = wt + θwt−1, with
|θ| < 1, it can be shown that

φhh = − (−θ)h(1− θ2)

1− θ2(h+1)
, h ≥ 1.
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Fig. 3.5. The ACF and PACF of an AR(2) model with φ1 = 1.5 and φ2 = −.75.

Table 3.1. Behavior of the ACF and PACF for ARMA Models

AR(p) MA(q) ARMA(p, q)

ACF Tails off Cuts off Tails off
after lag q

PACF Cuts off Tails off Tails off
after lag p

We do not have to compute the PACF by performing numerous regressions
first. The computations are done via a recursive formula called the
Durbin–Levinson algorithm.

The PACF for MA models behaves much like the ACF for AR models. Also,
the PACF for AR models behaves much like the ACF for MA models. Because an
invertible ARMA model has an infinite AR representation, the PACF will not cut
off. We may summarize these results in Table 3.1.

Example 3.15 Preliminary Analysis of the Recruitment Series
We consider the problem of modeling the Recruitment series shown in
Figure 1.5. There are 453 months of observed recruitment ranging over the
years 1950-1987. The ACF and the PACF given in Figure 3.6 are consistent
with the behavior of an AR(2). The ACF has cycles corresponding roughly to a
12-month period, and the PACF has large values for h = 1, 2 and then is
essentially zero for higher order lags. Based on Table 3.1, these results suggest
that a second-order (p = 2) autoregressive model might provide a good fit.
Although we will discuss estimation in detail in Section 3.4, we ran a
regression (see Section 2.1) using the data triplets
{(x; z1, z2) : (x3; x2, x1), (x4; x3, x2), . . . , (x453; x452, x451)} to fit the model

xt = φ0 + φ1xt−1 + φ2xt−2 + wt

for t = 3, 4, . . . , 453. The values of the estimates were φ̂0 = 6.74(1.11),
φ̂1 = 1.35(.04), φ̂2 = −.46(.04), and σ̂2

w = 89.72, where the estimated standard
errors are in parentheses.

The following R code can be used for this analysis. We use the script acf2
from astsa to print and plot the ACF and PACF.
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Fig. 3.6. ACF and PACF of the Recruitment series. Note that the lag axes are in terms of season (12
months in this case).

acf2(rec, 48) # will produce values and a graphic
(regr = ar.ols(rec, order=2, demean=FALSE, intercept=TRUE))
regr$asy.se.coef # standard errors of the estimates

3.4 Estimation

Throughout this section, we assume we have n observations, x1, . . . , xn, from a
causal and invertible Gaussian ARMA(p, q) process in which, initially, the order
parameters, p and q, are known. Our goal is to estimate the parameters,
φ1, . . . , φp, θ1, . . . , θq, and σ2

w. We will discuss the problem of determining p and
q later in this section.

We begin with method of moments estimators. The idea behind these
estimators is that of equating population moments to sample moments and then
solving for the parameters in terms of the sample moments. We immediately see
that, if E(xt) = µ, then the method of moments estimator of µ is the sample
average, x̄. Thus, while discussing method of moments, we will assume µ = 0.
Although the method of moments can produce good estimators, they can
sometimes lead to suboptimal estimators. We first consider the case in which the
method leads to optimal (efficient) estimators, that is, AR(p) models.

When the process is AR(p),

xt = φ1xt−1 + · · ·+ φpxt−p + wt,

similar to Example 3.10, we have the following result:

Definition 3.6 The Yule–Walker equations are given by

ρ(h) = φ1ρ(h− 1) + · · ·+ φpρ(h− p), h = 1, 2, . . . , p, (3.29)

σ2
w = γ(0) [1− φ1ρ(1)− · · · − φpρ(p)]. (3.30)

The estimators obtained by replacing γ(0) with its estimate, γ̂(0) and ρ(h)
with its estimate, ρ̂(h), are called the Yule–Walker estimators. For AR(p) models,
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if the sample size is large, the Yule–Walker estimators are approximately
normally distributed, and σ̂2

w is close to the true value of σ2
w.

Example 3.16 Yule–Walker Estimation for an AR(2) Process
The data shown in Figure 3.4 were n = 144 simulated observations from the
AR(2) model xt = 1.5xt−1 − .75xt−2 + wt, where wt ∼ iid N(0, 1). Using the
same simulated data, we have
ar.yw(ar2, order=2)
Coefficients:

1 2
1.4471 -0.7160
sigma^2 estimated as 1.561

Example 3.17 Yule–Walker Estimation of the Recruitment Series
In Example 3.15 we fit an AR(2) model to the recruitment series using
regression. Below are the results of fitting the same model using Yule-Walker
estimation in R, which are nearly identical to the values in Example 3.15.
rec.yw = ar.yw(rec, order=2)
rec.yw$x.mean # mean estimate
[1] 62.26278
rec.yw$ar # parameter estimates
[1] 1.3315874 -0.4445447
sqrt(diag(rec.yw$asy.var.coef)) # their standard errors
[1] 0.04222637 0.04222637
rec.yw$var.pred # error variance estimate
[1] 94.79912

In the case of AR(p) models, the Yule–Walker estimators are optimal
estimators, but this is not true for MA(q) or ARMA(p, q) models. AR(p) models
are linear models, and the Yule–Walker estimators are essentially least squares
estimators. MA or ARMA models are nonlinear models, so this technique does
not give optimal estimators.

Example 3.18 Method of Moments Estimation for an MA(1)
Consider the MA(1) model, xt = wt + θwt−1, where |θ| < 1. The model can
then be written as

xt = −
∞

∑
j=1

(−θ)jxt−j + wt,

which is nonlinear in θ. The first two population autocovariances are
γ(0) = σ2

w(1 + θ2) and γ(1) = σ2
wθ, so the estimate of θ is found by solving:

ρ̂(1) =
γ̂(1)
γ̂(0)

=
θ̂

1 + θ̂2
.

Two solutions exist, so we would pick the invertible one. If |ρ̂(1)| ≤ 1
2 , the

solutions are real, otherwise, a real solution does not exist. Even though
|ρ(1)| < 1

2 for an invertible MA(1), it may happen that |ρ̂(1)| ≥ 1
2 because it is

an estimator. For example, the following simulation in R produces a value of
ρ̂(1) = .507 when the true value is ρ(1) = .9/(1 + .92) = .497.
set.seed(2)
ma1 = arima.sim(list(order = c(0,0,1), ma = 0.9), n = 50)
acf(ma1, plot=FALSE)[1] # = .507 (lag 1 sample ACF)
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The preferred method of estimation is maximum likelihood estimation
(MLE), which determines the values of the parameters that are most likely to have
produced the observations. MLE is discussed in Section 3.6. For ARMA models,
this is closely related to least squares.

3.4.1 Least Squares Estimation
We now discuss least squares for ARMA(p, q) models via Gauss–Newton. Write
the model parameters as β = (φ1, . . . , φp, θ1, . . . , θq), and for the ease of
discussion, we will put µ = 0. Now, write the model in terms of the errors

wt(β) = xt −
p

∑
j=1

φjxt−j −
q

∑
k=1

θkwt−k(β), (3.31)

emphasizing the dependence of the errors on the parameters (recall that
wt = ∑∞

j=0 πjxt−j by invertibilty, and the πj are complicated functions of β).
For conditional least squares, we approximate the residual sum of squares by

conditioning on x1, . . . , xp (if p > 0) and
wp = wp−1 = wp−2 = · · · = w1−q = 0 (if q > 0), in which case, given β, we
may evaluate (3.31) for t = p + 1, p + 2, . . . , n. Using this conditioning
argument, the conditional error sum of squares is

Sc(β) =
n

∑
t=p+1

w2
t (β). (3.32)

Minimizing Sc(β) with respect to β yields the conditional least squares estimates.
If q = 0, the problem is linear regression and no iterative technique is needed

to minimize Sc(φ1, . . . , φp). For example, for an AR(1), xt = φxt−1 + wt, the
conditional sum of squares is

Sc(φ) =
n

∑
t=2

w2
t (φ) =

n

∑
t=2

(xt − φxt−1)
2.

Note that we have to start at t = 2 because x0 is not observed. The conditional
least squares estimate of φ follows from simple linear regression wherein,

φ̂ =
∑n

t=2 xtxt−1

∑n
t=2 x2

t−1
,

which is nearly ρ̂(1).
If q > 0, the problem becomes nonlinear regression and we will have to rely

on numerical optimization. Gauss–Newton uses an iterative method for solving
the problem of minimizing (3.32). We demonstrate the method for an MA(1).

Example 3.19 Gauss–Newton for an MA(1)
Consider an MA(1) process, xt = wt + θwt−1. Write the truncated errors as

wt(θ) = xt − θwt−1(θ), t = 1, . . . , n, (3.33)

where we condition on w0(θ) = 0. Our goal is to find the value of θ that
minimizes Sc(θ) = ∑n

t=1 w2
t (θ), which is a nonlinear function of θ.

Let θ(0) be an initial estimate of θ. For example, we could use method of
moments. The first-order Taylor expansion3 of wt(θ) at θ(0) is

3 Newton’s method and Taylor expansion (links to WikiBooks K-12 calculus book).

http://en.wikibooks.org/wiki/Calculus/Newton's_Method
http://en.wikibooks.org/wiki/Calculus/Taylor_series


74 3 ARIMA Models

wt(θ) ≈ wt(θ(0))−
(

θ − θ(0)

)
zt(θ(0)), (3.34)

where
zt(θ(0)) = −

∂wt(θ)

∂θ

∣∣∣∣
θ=θ(0)

.

Taking derivatives in (3.33),

∂wt(θ)

∂θ
= −wt−1(θ)− θ

∂wt−1(θ)

∂θ
, t = 1, . . . , n, (3.35)

where ∂w0(θ)/∂θ = 0. Using the notation of (3.34), we can also write (3.35) as

zt(θ) = wt−1(θ)− θzt−1(θ), t = 1, . . . , n, (3.36)

where z0(θ) = 0. This implies that the derivative sequence is an AR process,
which we may easily compute given a value of θ.

The linear approximation of Sc(θ) is found by replacing wt(θ) by its linear
approximation in (3.34),

Q(θ) =
n

∑
t=1

[
wt(θ(0))︸ ︷︷ ︸

yt

−
(
θ − θ(0)

)︸ ︷︷ ︸
β

zt(θ(0))︸ ︷︷ ︸
zt

]2
(3.37)

and this is the quantity that we will minimize. The problem is now simple linear
regression (“yt = βzt + εt”), so that

̂(θ − θ(0)) = ∑n
t=1 zt(θ(0))wt(θ(0))

/
∑n

t=1 z2
t (θ(0)),

or
θ̂ = θ(0) + ∑n

t=1 zt(θ(0))wt(θ(0))
/

∑n
t=1 z2

t (θ(0)).

Consequently, the Gauss–Newton procedure in this case is, on iteration j + 1,
set

θ(j+1) = θ(j) +
∑n

t=1 zt(θ(j))wt(θ(j))

∑n
t=1 z2

t (θ(j))
, j = 0, 1, 2, . . . , (3.38)

where the values in (3.38) are calculated recursively using (3.33) and (3.36).
The calculations are stopped when |θ(j+1) − θ(j)|, or |Q(θ(j+1))−Q(θ(j))|,
are smaller than some preset amount.

Example 3.20 Fitting the Glacial Varve Series
Consider the glacial varve series, for n = 634 years, analyzed in Example 2.7
and in Problem 2.6, where it was argued that a first-order moving average model
might fit the logarithmically transformed and differenced varve series, say,

∇ log(xt) = log(xt)− log(xt−1) = log
(

xt

xt−1

)
,

which can be interpreted as being approximately the percentage change in the
thickness.

The sample ACF and PACF, shown in Figure 3.7, confirm the tendency of
∇ log(xt) to behave as a first-order moving average process as the ACF has
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Fig. 3.7. ACF and PACF of transformed glacial varves.
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Fig. 3.8.Conditional sum of squares versus values of the moving average parameter for the glacial varve
example, Example 3.20. Vertical lines indicate the values of the parameter obtained via Gauss–Newton;
see Table 3.2 for the actual values.

only a significant peak at lag one and the PACF decreases exponentially. Using
Table 3.1, this sample behavior fits that of the MA(1) very well.

Since ρ̂(1) = −.397, our initial estimate is θ(0) = −.495 using
Example 3.18. The results of eleven iterations of the Gauss–Newton procedure,
(3.38), starting with θ(0) are given in Table 3.2. The final estimate is
θ̂ = θ(11) = −.773; interim values and the corresponding value of the
conditional sum of squares, Sc(θ) given in (3.32), are also displayed in the
table. The final estimate of the error variance is σ̂2

w = 148.98/632 = .236 with
632 degrees of freedom (one is lost in differencing). The value of the sum of the
squared derivatives at convergence is ∑n

t=1 z2
t (θ(11)) = 369.736, and

consequently, the estimated standard error of θ̂ is
√

.236/369.741 = .025;4 this
leads to a t-value of −.773/.025 = −30.92 with 632 degrees of freedom.

4 To estimate the standard error, we are using the standard regression results from (2.6) as an
approximation
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Table 3.2. Gauss–Newton Results for Example 3.20

j θ(j) Sc(θ(j)) ∑n
t=1 z2

t (θ(j))

0 −0.495 158.739 171.240
1 −0.668 150.747 235.266
2 −0.733 149.264 300.562
3 −0.756 149.031 336.823
4 −0.766 148.990 354.173
5 −0.769 148.982 362.167
6 −0.771 148.980 365.801
7 −0.772 148.980 367.446
8 −0.772 148.980 368.188
9 −0.772 148.980 368.522
10 −0.773 148.980 368.673
11 −0.773 148.980 368.741

Figure 3.8 displays the conditional sum of squares, Sc(θ) as a function of θ,
as well as indicating the values of each step of the Gauss–Newton algorithm.
Note that the Gauss–Newton procedure takes large steps toward the minimum
initially, and then takes very small steps as it gets close to the minimizing value.
When there is only one parameter, as in this case, it would be easy to evaluate
Sc(θ) on a grid of points, and then choose the appropriate value of θ from the
grid search. It would be difficult, however, to perform grid searches when there
are many parameters.

The following code was used in this example.
x = diff(log(varve)) # data
r = acf(x, lag=1, plot=FALSE)$acf[-1] # acf(1)
c(0) -> w -> z # initialize
c() -> Sc -> Sz -> Szw -> SS -> para
num = length(x)
## Estimation
para[1] = (1-sqrt(1-4*(r^2)))/(2*r) # MME
niter = 12
for (p in 1:niter){
for (i in 2:num){ w[i] = x[i] - para[p]*w[i-1]

z[i] = w[i-1]- para[p]*z[i-1] }
Sc[p] = sum(w^2)
Sz[p] = sum(z^2)
Szw[p] = sum(z*w)
para[p+1] = para[p] + Szw[p]/Sz[p] }

## Results
round(cbind(iteration=0:(niter-1), thetahat=para[1:niter], Sc, Sz), 3)
## Plot cond SS
th = seq(-.3,-.94,-.01)
for (p in 1:length(th)){
for (i in 2:num){ w[i] = x[i]-th[p]*w[i-1] }
SS[p] = sum(w^2) }

plot(th, SS, type="l", ylab=expression(S[c](theta)),
xlab=expression(theta))

abline(v=para[1:12], lty=2) # add results to plot
points(para[1:12], Sc[1:12], pch=16)

In the general case of causal and invertible ARMA(p, q) models, maximum
likelihood estimation and nonlinear least squares estimation (and Yule–Walker
estimation in the case of AR models) all lead to optimal estimators.
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Example 3.21 Some Specific Large Sample Distributions 5
AR(1):

φ̂ ∼ AN
[
φ, n−1(1− φ2)

]
. (3.39)

AR(2): (
φ̂1
φ̂2

)
∼ AN

[(
φ1
φ2

)
, n−1

(
1− φ2

2 − φ1(1 + φ2)
sym 1− φ2

2

)]
. (3.40)

MA(1):
θ̂ ∼ AN

[
θ, n−1(1− θ2)

]
. (3.41)

MA(2): (
θ̂1
θ̂2

)
∼ AN

[(
θ1
θ2

)
, n−1

(
1− θ2

2 θ1(1 + θ2)
sym 1− θ2

2

)]
. (3.42)

Example 3.22 Overfitting Caveat
The asymptotic behavior of the parameter estimators gives us an additional
insight into the problem of fitting ARMA models to data. For example, suppose
a time series follows an AR(1) process and we decide to fit an AR(2) to the
data. Do any problems occur in doing this? More generally, why not simply fit
large-order AR models to make sure that we capture the dynamics of the
process? After all, if the process is truly an AR(1), the other autoregressive
parameters will not be significant. The answer is that if we overfit, we obtain
less efficient, or less precise parameter estimates. For example, if we fit an
AR(1) to an AR(1) process, for large n, var(φ̂1) ≈ n−1(1− φ2

1). But, if we fit
an AR(2) to the AR(1) process, for large n, var(φ̂1) ≈ n−1(1− φ2

2) = n−1

because φ2 = 0. Thus, the variance of φ1 has been inflated, making the
estimator less precise.

We do want to mention, however, that overfitting can be used as a diagnostic
tool. For example, if we fit an AR(2) model to the data and are satisfied with
that model, then adding one more parameter and fitting an AR(3) should lead to
approximately the same model as in the AR(2) fit. We will discuss model
diagnostics in more detail in Section 3.8.

3.5 Forecasting

In forecasting, the goal is to predict future values of a time series, xn+m,
m = 1, 2, . . ., based on the data, x1, . . . , xn, collected to the present. Throughout
this section, we will assume that the model parameters are known. When the
parameters are unknown, we replace them with their estimates.

To understand how to forecast an ARMA process, it is instructive to
investigate forecasting an AR(1),

xt = φxt−1 + wt .

5 Wewrite Xn ∼ AN(µn, σ2
n) if, for large n, Zn = (Xn− µn)/σn is approximately standard normal.



78 3 ARIMA Models

First, consider one-step-ahead prediction, that is, given data x1, . . . , xn, we wish
to forecast the value of the time series at the next time point, xn+1. We will call
the forecast xn

n+1. In general, the notation xn
t refers to what we can expect xt to

be given the data x1, . . . , xn. Since

xn+1 = φxn + wn+1 ,

we should have
xn

n+1 = φxn
n + wn

n+1 .

But since we know xn (it is one of our observations), xn
n = xn, and since wn+1 is

a future error, the best we can do is put wn
n+1 = E(wn+1) = 0. Consequently, the

one-step-ahead forecast is
xn

n+1 = φxn . (3.43)

The one-step-ahead mean squared prediction error (MSPE) is given by

Pn
n+1 = E[xn+1 − xn

n+1]
2 = E[xn+1 − φxn]

2 = Ew2
n+1 = σ2

w.

The two-step-ahead forecast is obtained similarly. Since, by the model,

xn+2 = φxn+1 + wn+2 ,

we should have
xn

n+2 = φxn
n+1 + wn

n+2 .

Again, wn+2 is a future error, so wn
n+2 = 0. Also, we already know xn

n+1 = φxn,
so the forecast is

xn
n+2 = φxn

n+1 = φ2xn . (3.44)

The two-step-ahead mean squared prediction error (MSPE) is given by

Pn
n+2 = E[xn+2 − xn

n+2]
2 = E[φxn+1 + wn+2 − φ2xn]

2

= E[wn+2 + φ(xn+1 − φxn)]
2 = E[wn+2 + φwn+1]

2 = σ2
w(1 + φ2).

Generalizing these results, it is easy to see that the m-step-ahead forecast is.

xn
n+m = φmxn m = 1, 2, . . . . (3.45)

Also, the MSPE will is

Pn
n+m = E[xn+m − xn

n+m]
2 = σ2

w(1 + φ2 + · · ·+ φ2(m−1)) . (3.46)

Note that since |φ| < 1, we will have φm → 0 fast as m→ ∞. Thus the
forecasts in (3.45) will soon go to zero (or the mean) and become useless. In
addition, the MSPE will converge to σ2

w ∑∞
j=0 φ2j = σ2

w/(1− φ2), which is the
variance of the process xt; recall (3.6).

Forecasting an AR(p) model is basically the same as forecasting an AR(1)
provided the sample size n is larger than the order p, which it is most of the time.
Since MA(q) and ARMA(p, q) are AR(∞), the same basic techniques can be
used. Because ARMA models are invertible; i.e., wt = xt + ∑∞

j=1 πjxt−j, we
may write

xn+m = −
∞

∑
j=1

πjxn+m−j + wn+m.
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Fig. 3.9. Twenty-four month forecasts for the Recruitment series. The actual data shown are from
about January 1980 to September 1987, and then the forecasts plus and minus one standard error are
displayed.

If we had the infinite history {xn, xn−1, . . . , x1, x0, x−1, . . .}, of the data
available, we would predict xn+m by

xn
n+m = −

∞

∑
j=1

πjxn
n+m−j

successively for m = 1, 2, . . . . In this case, xn
t = xt for t = n, n− 1, . . . . We

only have the actual data {xn, xn−1, . . . , x1} available, but a practical solution is
to truncate the forecasts as

xn
n+m = −

n+m−1

∑
j=1

πjxn
n+m−j,

with xn
t = xt for 1 ≤ t ≤ n. For ARMA models in general, as long as n is large,

the approximation works well because the π-weights are going to zero
exponentially fast. For large n, it can be shown that the mean squared prediction
error for ARMA(p, q) models is approximately

Pn
n+m = σ2

w

m−1

∑
j=0

ψ2
j . (3.47)

Example 3.23 Forecasting the Recruitment Series
In Example 3.15 we fit an AR(2) model to the Recruitment series using OLS.
Here, we use MLE:
sarima(rec,2,0,0) # fit model
Coefficients:

ar1 ar2 xmean
1.3512 -0.4612 61.8585

s.e. 0.0416 0.0417 4.0039
sigma^2 estimated as 89.33
61.8585*(1-1.3512+.4612) # get constant
[1] 6.804435

The results are nearly the same as using OLS. Using the parameter estimates as
the actual parameter values, the forecasts and root MSPEs can be calculated in
a similar fashion to the introduction to this section.
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Figure 3.9 shows the result of forecasting the Recruitment series over a
24-month horizon, m = 1, 2, . . . , 24, obtained in R as
sarima.for(rec, 24, 2, 0, 0)

Note how the forecast levels off to the mean quickly and the prediction intervals
are wide and become constant. That is, because of the short memory, the
forecasts settle to the mean, µx, of the process, and the MSPE becomes
γx(0) = var(xt).

3.6 Maximum Likelihood Estimation **

For a normal ARMA(p, q) model, the optimal way to estimate the parameters is
to use either maximum likelihood estimation, or unconditional least squares
estimation. Without going into general details, we describe the technique for an
AR(1) model.

Example 3.24 Estimation for an AR(1)
Let

xt = µ + φ(xt−1 − µ) + wt (3.48)

where |φ| < 1 and wt ∼ iid N(0, σ2
w). Given data x1, x2, . . . , xn, we seek the

likelihood
L(µ, φ, σ2

w) = f
(

x1, x2, . . . , xn
∣∣ µ, φ, σ2

w

)
.

In the case of an AR(1), we may write the likelihood as

L(µ, φ, σ2
w) = f (x1) f (x2

∣∣ x1) · · · f (xn
∣∣ xn−1),

where we have dropped the parameters in the densities, f (·), to ease the
notation. Because, for t > 1, xt

∣∣ xt−1 ∼ N
(
µ + φ(xt−1 − µ), σ2

w
)
, we have

f (xt
∣∣ xt−1) = fw[(xt − µ)− φ(xt−1 − µ)],

where fw(·) is the density of wt, that is, the normal density with mean zero and
variance σ2

w. We may then write the likelihood as

L(µ, φ, σw) = f (x1)
n

∏
t=2

fw [(xt − µ)− φ(xt−1 − µ)] .

To find f (x1), we can use the causal representation

x1 = µ +
∞

∑
j=0

φjw1−j

to see that x1 is normal, with mean µ and variance σ2
w/(1− φ2). Finally, for an

AR(1), the likelihood is

L(µ, φ, σ2
w) = (2πσ2

w)
−n/2(1− φ2)1/2 exp

[
−S(µ, φ)

2σ2
w

]
, (3.49)

** This section may be skipped without harming any living things.
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where

S(µ, φ) = (1− φ2)(x1 − µ)2 +
n

∑
t=2

[(xt − µ)− φ(xt−1 − µ)]2 . (3.50)

Typically, S(µ, φ) is called the unconditional sum of squares. We could have
also considered the estimation of µ and φ using unconditional least squares,
that is, estimation by minimizing S(µ, φ).

Taking the partial derivative of the log of (3.49) with respect to σ2
w and

setting the result equal to zero, we see that for any given values of µ and φ in
the parameter space, σ2

w = n−1S(µ, φ) maximizes the likelihood. Thus, the
maximum likelihood estimate of σ2

w is

σ̂2
w = n−1S(µ̂, φ̂), (3.51)

where µ̂ and φ̂ are the MLEs of µ and φ, respectively. If we replace n in (3.51)
by n− 2, we would obtain the unconditional least squares estimate of σ2

w.
If, in (3.49), we take logs, replace σ2

w by σ̂2
w, and ignore constants, µ̂ and φ̂

are the values that minimize the criterion function

l(µ, φ) = log
[
n−1S(µ, φ)

]
− n−1 log(1− φ2); (3.52)

that is, l(µ, φ) ∝ −2 log L(µ, φ, σ̂2
w).6 Because (3.50) and (3.52) are

complicated functions of the parameters, the minimization of l(µ, φ) or S(µ, φ)
is accomplished numerically. In the case of AR models, we have the advantage
that, conditional on initial values, they are linear models. That is, we can drop
the term in the likelihood that causes the nonlinearity. Conditioning on x1, the
conditional likelihood becomes

L(µ, φ, σ2
w
∣∣ x1) =

n

∏
t=2

fw [(xt − µ)− φ(xt−1 − µ)]

= (2πσ2
w)
−(n−1)/2 exp

[
−Sc(µ, φ)

2σ2
w

]
, (3.53)

where the conditional sum of squares is

Sc(µ, φ) =
n

∑
t=2

[(xt − µ)− φ(xt−1 − µ)]2 . (3.54)

The conditional MLE of σ2
w is

σ̂2
w = Sc(µ̂, φ̂)/(n− 1), (3.55)

and µ̂ and φ̂ are the values that minimize the conditional sum of squares,
Sc(µ, φ). Letting α = µ(1− φ), the conditional sum of squares can be written
as

Sc(µ, φ) =
n

∑
t=2

[xt − (α + φxt−1)]
2 . (3.56)

The problem is now the linear regression problem stated in §2.2. Following the
results from least squares estimation, we have α̂ = x̄(2) − φ̂x̄(1), where

6 The criterion function is sometimes called the profile or concentrated likelihood.
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x̄(1) = (n− 1)−1 ∑n−1
t=1 xt, and x̄(2) = (n− 1)−1 ∑n

t=2 xt, and the conditional
estimates are then

µ̂ =
x̄(2) − φ̂x̄(1)

1− φ̂
(3.57)

φ̂ =
∑n

t=2(xt − x̄(2))(xt−1 − x̄(1))

∑n
t=2(xt−1 − x̄(1))2 . (3.58)

From (3.57) and (3.58), we see that µ̂ ≈ x̄ and φ̂ ≈ ρ̂(1). That is, the
Yule–Walker estimators and the conditional least squares estimators are
approximately the same. The only difference is the inclusion or exclusion of
terms involving the endpoints, x1 and xn. We can also adjust the estimate of σ2

w
in (3.55) to be equivalent to the least squares estimator, that is, divide Sc(µ̂, φ̂)
by (n− 3) instead of (n− 1) in (3.55).

For general AR(p) models, maximum likelihood estimation, unconditional
least squares, and conditional least squares follow analogously to the AR(1)
example. For ARMA models in general, the densities f (xt | x1, . . . , xt−1) that
form the likelihood are obtained using the forecasting methods discussed in the
previous section; details are in more advanced texts.

3.7 Integrated Models

In previous chapters, we saw that if xt is a random walk, xt = xt−1 + wt, then by
differencing xt, we find that ∇xt = wt is stationary. In many situations, time
series can be thought of as being composed of two components, a nonstationary
trend component and a zero-mean stationary component. For example, in
Section 2.1 we considered the model

xt = µt + yt, (3.59)

where µt = β0 + β1t and yt is stationary. Differencing such a process will lead
to a stationary process:

∇xt = xt − xt−1 = β1 + yt − yt−1 = β1 +∇yt.

Another model that leads to first differencing is the case in which µt in (3.59) is
stochastic and slowly varying according to a random walk. That is,

µt = µt−1 + vt

where vt is stationary. In this case,

∇xt = vt +∇yt,

is stationary. If µt in (3.59) is quadratic, µt = β0 + β1t + β2t2, then the
differenced series ∇2yt is stationary. Stochastic trend models can also lead to
higher order differencing. For example, suppose

µt = µt−1 + vt and vt = vt−1 + et,
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where et is stationary. Then, ∇xt = vt +∇yt is not stationary, but

∇2xt = et +∇2yt

is stationary.
The integrated ARMA, or ARIMA, model is a broadening of the class of

ARMA models to include differencing. The basic idea is that if differencing the
data at some order d produces an ARMA process, then the original process is
said to be ARIMA.

Definition 3.7 A process xt is said to be ARIMA(p, d, q) if

∇dxt = (1− B)dxt

is ARMA(p, q). In general, we will write the model as

φ(B)(1− B)dxt = θ(B)wt. (3.60)

If E(∇dxt) = µ, we write the model as

φ(B)(1− B)dxt = δ + θ(B)wt,

where δ = µ(1− φ1 − · · · − φp).

It should be clear that, since yt = ∇dxt is ARMA, we can use Section 3.5
methods to obtain forecasts of yt, which in turn lead to forecasts for xt. For
example, if d = 1, given forecasts yn

n+m for m = 1, 2, . . ., we have
yn

n+m = xn
n+m − xn

n+m−1, so that

xn
n+m = yn

n+m + xn
n+m−1

with initial condition xn
n+1 = yn

n+1 + xn (noting xn
n = xn).

It is a little more difficult to obtain the prediction errors Pn
n+m, but for large n,

the approximation used in Section 3.5, equation (3.47), works well. That is, the
mean-squared prediction error can be approximated by

Pn
n+m = σ2

w

m−1

∑
j=0

ψ∗2j , (3.61)

where ψ∗j is the coefficient of zj in ψ∗(z) = θ(z)/φ(z)(1− z)d.
To better understand forecasting integrated models, we examine the

properties of some simple cases.

Example 3.25 RandomWalk with Drift
To fix ideas, we begin by considering the random walk with drift model first
presented in Example 1.9, that is,

xt = δ + xt−1 + wt,

for t = 1, 2, . . ., and x0 = 0. Technically, the model is not ARIMA, but we
could include it trivially as an ARIMA(0, 1, 0) model. Given data x1, . . . , xn,
the one-step-ahead forecast is given by
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xn
n+1 = δ + xn

n + wn
n+1 = δ + xn .

The two-step-ahead forecast is given by xn
n+2 = δ + xn

n+1 = 2δ + xn, and
consequently, the m-step-ahead forecast, for m = 1, 2, . . ., is

xn
n+m = m δ + xn, (3.62)

To obtain the forecast errors, it is convenient to recall equation (1.4), i.e.,
xn = n δ + ∑n

j=1 wj, in which case we may write

xn+m = (n + m) δ +
n+m

∑
j=1

wj = m δ + xn +
n+m

∑
j=n+1

wj.

From this it follows that the m-step-ahead prediction error is given by

Pn
n+m = E(xn+m − xn

n+m)
2 = E

( n+m

∑
j=n+1

wj

)2
= m σ2

w. (3.63)

Unlike the stationary case, as the forecast horizon grows, the prediction errors,
(3.63), increase without bound and the forecasts follow a straight line with
slope δ emanating from xn.

Example 3.26 IMA(1, 1) and EWMA
The ARIMA(0,1,1), or IMA(1,1) model is of interest because many economic
time series can be successfully modeled this way. The model leads to a
frequently used forecasting method called exponentially weighted moving
averages (EWMA). We will write the model as

xt = xt−1 + wt − λwt−1, (3.64)

with |λ| < 1, for t = 1, 2, . . . , and x0 = 0, because this model formulation is
easier to work with here, and it leads to the standard representation for EWMA.
We could have included a drift term in (3.64), as was done in the previous
example, but for the sake of simplicity, we leave it out of the discussion. If we
write

yt = wt − λwt−1,

we may write (3.64) as xt = xt−1 + yt. Because |λ| < 1, yt has an invertible
representation, yt + ∑∞

j=1 λjyt−j = wt, and substituting yt = xt − xt−1, we
may write

xt =
∞

∑
j=1

(1− λ)λj−1xt−j + wt. (3.65)

as an approximation for large t (put xt = 0 for t ≤ 0). Verification of (3.65) is
left to the reader (Problem 3.11). Using the approximation (3.65), we have that
the approximate one-step-ahead predictor is

xn
n+1 = (1− λ)xn + λxn−1

n , (3.66)

because xn−1
n = ∑∞

j=1(1− λ)λj−1xn−j and wn
n+1 = 0. From (3.66), we see

that the new forecast is a linear combination of the old forecast and the new
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Fig. 3.10. Output for Example 3.26: Simulated data with an EWMA superimposed.

observation. The mean-square prediction error can be approximated using
(3.61) by noting that ψ∗(z) = (1− λz)/(1− z) = 1 + (1− λ)∑∞

j=1 zj for
|z| < 1; consequently, for large n, (3.61) leads to

Pn
n+m ≈ σ2

w[1 + (m− 1)(1− λ)2].

In EWMA, the parameter 1− λ is often called the smoothing parameter
and is restricted to be between zero and one. Larger values of λ lead to
smoother forecasts. This method of forecasting is popular because it is easy to
use; we need only retain the previous forecast value and the current observation
to forecast the next time period. In the following, we show how to generate 100
observations from an IMA(1,1) model with λ = −θ = .8 and then calculate
and display the fitted EWMA superimposed on the data. This is accomplished
using the Holt-Winters command in R (see the help file ?HoltWinters for
details). This and related techniques are generally called exponential
smoothing; the ideas were made popular in the late 1950s and are still used
today by old men who smell bad because they are simple and easy to use. To
reproduce Figure 3.10, use the following.
set.seed(666)
x = arima.sim(list(order = c(0,1,1), ma = -0.8), n = 100)
(x.ima = HoltWinters(x, beta=FALSE, gamma=FALSE)) # α below is 1− λ
Smoothing parameter: alpha: 0.1663072

plot(x.ima, main='EWMA')

3.8 Building ARIMA Models

There are a few basic steps to fitting ARIMA models to time series data. These
steps involve

• plotting the data,
• possibly transforming the data,
• identifying the dependence orders of the model,
• parameter estimation,
• diagnostics, and
• model choice.



86 3 ARIMA Models

First, as with any data analysis, we should construct a time plot of the data, and
inspect the graph for any anomalies. If, for example, the variability in the data
grows with time, it will be necessary to transform the data to stabilize the
variance. In such cases, the Box–Cox class of power transformations, equation
(2.35), could be employed. Also, the particular application might suggest an
appropriate transformation. For example, we have seen numerous examples
where the data behave as xt = (1 + pt)xt−1, where pt is a small percentage
change from period t− 1 to t, which may be negative. If pt is a relatively stable
process, then ∇ log(xt) ≈ pt will be relatively stable. Frequently, ∇ log(xt) is
called the return or growth rate. This general idea was used in Example 3.20, and
we will use it again in Example 3.27.

After suitably transforming the data, the next step is to identify preliminary
values of the autoregressive order, p, the order of differencing, d, and the moving
average order, q. A time plot of the data will typically suggest whether any
differencing is needed. If differencing is called for, then difference the data once,
d = 1, and inspect the time plot of ∇xt. If additional differencing is necessary,
then try differencing again and inspect a time plot of ∇2xt. Be careful not to
overdifference because this may introduce dependence where none exists. For
example, xt = wt is serially uncorrelated, but ∇xt = wt − wt−1 is MA(1). In
addition to time plots, the sample ACF can help in indicating whether
differencing is needed. Because the polynomial φ(z)(1− z)d has a unit root, the
sample ACF, ρ̂(h), will not decay to zero fast as h increases. Thus, a slow decay
in ρ̂(h) is an indication that differencing may be needed.

When preliminary values of d have been settled, the next step is to look at the
sample ACF and PACF of ∇dxt for whatever values of d have been chosen.
Using Table 3.1 as a guide, preliminary values of p and q are chosen. Note that it
cannot be the case that both the ACF and PACF cut off. Because we are dealing
with estimates, it will not always be clear whether the sample ACF or PACF is
tailing off or cutting off. Also, two models that are seemingly different can
actually be very similar. With this in mind, we should not worry about being so
precise at this stage of the model fitting. At this point, a few preliminary values of
p, d, and q should be at hand, and we can start estimating the parameters.

Example 3.27 Analysis of GNP Data
In this example, we consider the analysis of quarterly U.S. GNP from 1947(1)
to 2002(3), n = 223 observations. The data are real U.S. gross national product
in billions of chained 1996 dollars and have been seasonally adjusted. The data
were obtained from the Federal Reserve Bank of St. Louis
(http://research.stlouisfed.org/). Figure 3.11 shows a plot of the data,
say, yt. Because strong trend tends to obscure other effects, it is difficult to see
any other variability in data except for periodic large dips in the economy.
When reports of GNP and similar economic indicators are given, it is often in
growth rate (percent change) rather than in actual (or adjusted) values that is of
interest. The growth rate, say, xt = ∇ log(yt), is plotted in Figure 3.12, and it
appears to be a stable process.

The sample ACF and PACF of the quarterly growth rate are plotted in
Figure 3.13. Inspecting the sample ACF and PACF, we might feel that the ACF
is cutting off at lag 2 and the PACF is tailing off. This would suggest the GNP
growth rate follows an MA(2) process, or log GNP follows an ARIMA(0, 1, 2)

http://research.stlouisfed.org/
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Fig. 3.11. Top: Quarterly U.S. GNP from 1947(1) to 2002(3). Bottom: Sample ACF of the GNP data.
Lag is in terms of years.

model. Rather than focus on one model, we will also suggest that it appears that
the ACF is tailing off and the PACF is cutting off at lag 1. This suggests an
AR(1) model for the growth rate, or ARIMA(1, 1, 0) for log GNP. As a
preliminary analysis, we will fit both models.

Using MLE to fit the MA(2) model for the growth rate, xt, the estimated
model is

x̂t = .008(.001) + .303(.065)ŵt−1 + .204(.064)ŵt−2 + ŵt, (3.67)

where σ̂w = .0094 is based on 219 degrees of freedom. The values in
parentheses are the corresponding estimated standard errors. All of the
regression coefficients are significant, including the constant. We make a
special note of this because, as a default, some computer packages do not fit a
constant in a differenced model. That is, these packages assume, by default, that
there is no drift. In this example, not including a constant leads to the wrong
conclusions about the nature of the U.S. economy. Not including a constant
assumes the average quarterly growth rate is zero, whereas the U.S. GNP
average quarterly growth rate is about 1% (which can be seen easily in
Figure 3.12). We leave it to the reader to investigate what happens when the
constant is not included.

The estimated AR(1) model is

x̂t = .008(.001) (1− .347) + .347(.063)xt−1 + ŵt, (3.68)

where σ̂w = .0095 on 220 degrees of freedom; note that the constant in (3.68)
is .008 (1− .347) = .005.

We will discuss diagnostics next, but assuming both of these models fit
well, how are we to reconcile the apparent differences of the estimated models
(3.67) and (3.68)? In fact, the fitted models are nearly the same. To show this,
consider an AR(1) model of the form in (3.68) without a constant term; that is,

xt = .35xt−1 + wt,
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Fig. 3.13. Sample ACF and PACF of the GNP quarterly growth rate. Lag is in years.

and write it in its causal form, xt = ∑∞
j=0 ψjwt−j, where we recall ψj = .35j.

Thus, ψ0 = 1, ψ1 = .350, ψ2 = .123, ψ3 = .043, ψ4 = .015, ψ5 = .005, ψ6 =
.002, ψ7 = .001, ψ8 = 0, ψ9 = 0, ψ10 = 0, and so forth. Thus,

xt ≈ .35wt−1 + .12wt−2 + wt,

which is similar to the fitted MA(2) model in (3.67).
The analysis can be performed in R as follows; partial output is shown.

tsplot(gnp); acf2(gnp, 50)
gnpgr = diff(log(gnp)) # growth rate
tsplot(gnpgr); acf2(gnpgr, 24)
sarima(gnpgr, 1, 0, 0) # AR(1)
$ttable

Estimate SE t.value p.value
ar1 0.3467 0.0627 5.5255 0
xmean 0.0083 0.0010 8.5398 0

sarima(gnpgr, 0, 0, 2) # MA(2)
$ttable

Estimate SE t.value p.value
ma1 0.3028 0.0654 4.6272 0.0000
ma2 0.2035 0.0644 3.1594 0.0018
xmean 0.0083 0.0010 8.7178 0.0000

ARMAtoMA(ar=.35, ma=0, 10) # prints psi-weights
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The next step in model fitting is diagnostics. This investigation includes the
analysis of the residuals as well as model comparisons. Again, the first step
involves a time plot of the innovations (or residuals), xt − x̂t−1

t , or of the
standardized innovations

et =
(

xt − x̂t−1
t

) / √
P̂t−1

t , (3.69)

where x̂t−1
t is the one-step-ahead prediction of xt based on the fitted model and

P̂t−1
t is the estimated one-step-ahead error variance. If the model fits well, the

standardized residuals should behave as an iid sequence with mean zero and
variance one. The time plot should be inspected for any obvious departures from
this assumption. Unless the time series is Gaussian, it is not enough that the
residuals are uncorrelated. It is possible in the non-Gaussian case to have an
uncorrelated process for which contiguous values are highly dependent.

Investigation of marginal normality can be accomplished visually by looking
at a histogram of the residuals. In addition to this, a normal probability plot or a
Q-Q plot can help in identifying departures from normality. See Johnson and
Wichern (1992, Chapter 4) for details of this test as well as additional tests for
multivariate normality.

There are several tests of randomness, for example the runs test, that could be
applied to the residuals. We could also inspect the sample autocorrelations of the
residuals, say, ρ̂e(h), for any patterns or large values. Recall that, for a white
noise sequence, the sample autocorrelations are approximately independently and
normally distributed with zero means and variances 1/n. Hence, a good check on
the correlation structure of the residuals is to plot ρ̂e(h) versus h along with the
error bounds of ±2/

√
n. The residuals from a model fit, however, will not quite

have the properties of a white noise sequence and the variance of ρ̂e(h) can be
much less than 1/n. Details can be found in Box and Pierce (1970) and McLeod
(1978). This part of the diagnostics can be viewed as a visual inspection of ρ̂e(h)
with the main concern being the detection of obvious departures from the
independence assumption.

In addition to plotting ρ̂e(h), we can perform a general test of whiteness that
takes into consideration the magnitudes of ρ̂e(h) as a group. The
Ljung–Box–Pierce Q-statistic given by

Q = n(n + 2)
H

∑
h=1

ρ̂2
e (h)

n− h
(3.70)

can be used to perform such a test. The value H in (3.70) is chosen somewhat
arbitrarily, typically, H = 20. Under the null hypothesis of model adequacy,
asymptotically (n→ ∞), Q ∼ χ2

H−p−q. Thus, we would reject the null
hypothesis at level α if the value of Q exceeds the (1− α)-quantile of the
χ2

H−p−q distribution. Details can be found in Box and Pierce (1970), Ljung and
Box (1978), and Davies et al. (1977). The basic idea is that if wt is white noise,
then by Property 1.2, nρ̂2

w(h), for h = 1, . . . , H, are asymptotically independent
χ2

1 random variables. This means that n ∑H
h=1 ρ̂2

w(h) is approximately a χ2
H

random variable. Because the test involves the ACF of residuals from a model fit,
there is a loss of p + q degrees of freedom; the other values in (3.70) are used to
adjust the statistic to better match the asymptotic chi-squared distribution.
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Fig. 3.14. Diagnostics of the residuals from MA(2) fit on GNP growth rate.

Example 3.28 Diagnostics for GNP Growth Rate Example
We will focus on the MA(2) fit from Example 3.27; the analysis of the AR(1)
residuals is similar. Figure 3.14 displays a plot of the standardized residuals, the
ACF of the residuals, a boxplot of the standardized residuals, and the p-values
associated with the Q-statistic, (3.70), at lags H = 3 through H = 20 (with
corresponding degrees of freedom H − 2).

Inspection of the time plot of the standardized residuals in Figure 3.14
shows no obvious patterns. Notice that there may be outliers, however, with a
few values exceeding 3 standard deviations in magnitude. The ACF of the
standardized residuals shows no apparent departure from the model
assumptions, and the Q-statistic is never significant at the lags shown. The
normal Q-Q plot of the residuals suggests that the assumption of normality is
appropriate. The diagnostics shown in Figure 3.14 are a by-product of the
sarima command from the previous example.

Example 3.29 Diagnostics for the Glacial Varve Series
In Example 3.20, we fit an ARIMA(0, 1, 1) model to the logarithms of the
glacial varve data and there appears to be a small amount of autocorrelation left
in the residuals and the Q-tests are all significant; see Figure 3.15.

To adjust for this problem, we fit an ARIMA(1, 1, 1) to the logged varve
data and obtained the estimates
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Fig. 3.15. Q-statistic p-values for the ARIMA(0, 1, 1) fit (top) and the ARIMA(1, 1, 1) fit (bottom) to
the logged varve data.

φ̂ = .23(.05), θ̂ = −.89(.03), σ̂2
w = .23.

Hence the AR term is significant. The Q-statistic p-values for this model are
also displayed in Figure 3.15, and it appears this model fits the data well.

As previously stated, the diagnostics are byproducts of the individual
sarima runs. We note that we did not fit a constant in either model because
there is no apparent drift in the differenced, logged varve series. This fact can
be verified by noting the constant is not significant when the command
no.constant=TRUE is removed in the code:
sarima(log(varve), 0, 1, 1, no.constant=TRUE) # ARIMA(0,1,1)
sarima(log(varve), 1, 1, 1, no.constant=TRUE) # ARIMA(1,1,1)

In Example 3.27, we have two competing models, an AR(1) and an MA(2) on
the GNP growth rate, that each appear to fit the data well. In addition, we might
also consider that an AR(2) or an MA(3) might do better for forecasting. Perhaps
combining both models, that is, fitting an ARMA(1, 2) to the GNP growth rate,
would be the best. As previously mentioned, we have to be concerned with
overfitting the model; it is not always the case that more is better. Overfitting leads
to less-precise estimators, and adding more parameters may fit the data better but
may also lead to bad forecasts. This result is illustrated in the following example.

Example 3.30 A Problem with Overfitting
Figure 3.16 shows the U.S. population by official census, every ten years from
1910 to 1990, as points. If we use these nine observations to predict the future
population, we can use an eight-degree polynomial so the fit to the nine
observations is perfect. The model in this case is

xt = β0 + β1t + β2t2 + · · ·+ β8t8 + wt.

The fitted line, which is plotted in the figure, passes through the nine
observations. The model predicted that the population of the United States will
be close to zero in the year 2000, and will cross zero sometime in the year
2002! I see dead people.

The final step of model fitting is model choice or model selection. That is, we
must decide which model we will retain for forecasting. The most popular
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Fig. 3.16. A perfect fit and a terrible forecast.

techniques, AIC, AICc, and BIC, were described in Section 2.1 in the context of
regression models.

Example 3.31 Model Choice for the U.S. GNP Series
To follow up on Example 3.28, recall that two models, an AR(1) and an
MA(2), fit the GNP growth rate well. To choose the final model, we compare
the AIC, the AICc, and the BIC for both models. These values are a byproduct
of the sarima runs displayed at the end of Example 3.27, but for convenience,
we display them again here (recall the growth rate data are in gnpgr):
sarima(gnpgr, 1, 0, 0) # AR(1)
$AIC: -8.294403 $AICc: -8.284898 $BIC: -9.263748

sarima(gnpgr, 0, 0, 2) # MA(2)
$AIC: -8.297693 $AICc: -8.287854 $BIC: -9.251711

The AIC and AICc both prefer the MA(2) fit, whereas the BIC prefers the
simpler AR(1) model. It is often the case that the BIC will select a model of
smaller order than the AIC or AICc. In this case, it is reasonable to retain the
AR(1) because pure autoregressive models are easier to work.

3.9 Regression with Autocorrelated Errors

In Section 2.1, we covered the classical regression model with uncorrelated errors
wt. In this section, we discuss the modifications that might be considered when
the errors are correlated. That is, consider the regression model

yt = β1zt1 + · · ·+ βrztr + xt =
r

∑
j=1

β jztj + xt (3.71)

where xt is a process with some covariance function γx(s, t). In ordinary least
squares, the assumption is that xt is white Gaussian noise, in which case
γx(s, t) = 0 for s 6= t and γx(t, t) = σ2, independent of t. If this is not the case,
then weighted least squares should be used.

In the time series case, it is often possible to assume a stationary covariance
structure for the error process xt that corresponds to a linear process and try to
find an ARMA representation for xt. For example, if we have a pure AR(p) error,
then
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φ(B)xt = wt,

and φ(B) = 1− φ1B− · · · − φpBp is the linear transformation that, when
applied to the error process, produces the white noise wt. Multiplying the
regression equation through by the transformation φ(B) yields,

φ(B)yt︸ ︷︷ ︸
y∗t

=
r

∑
j=1

β j φ(B)ztj︸ ︷︷ ︸
z∗tj

+ φ(B)xt︸ ︷︷ ︸
wt

,

and we are back to the linear regression model where the observations have been
transformed so that y∗t = φ(B)yt is the dependent variable, z∗tj = φ(B)ztj for
j = 1, . . . , r, are the independent variables, but the βs are the same as in the
original model. For example, if p = 1, then y∗t = yt − φyt−1 and
z∗tj = ztj − φzt−1,j.

In the AR case, we may set up the least squares problem as minimizing the
error sum of squares

S(φ, β) =
n

∑
t=1

w2
t =

n

∑
t=1

[
φ(B)yt −

r

∑
j=1

β jφ(B)ztj

]2

with respect to all the parameters, φ = {φ1, . . . , φp} and β = {β1, . . . , βr}. Of
course, this is done using numerical methods.

If the error process is ARMA(p, q), i.e., φ(B)xt = θ(B)wt, then in the above
discussion, we transform by π(B)xt = wt, where, recalling (3.16),
π(B) = θ(B)−1φ(B). In this case the error sum of squares also depends on
θ = {θ1, . . . , θq}:

S(φ, θ, β) =
n

∑
t=1

w2
t =

n

∑
t=1

[
π(B)yt −

r

∑
j=1

β jπ(B)ztj

]2

At this point, the main problem is that we do not typically know the behavior
of the noise xt prior to the analysis. An easy way to tackle this problem was first
presented in Cochrane and Orcutt (1949), and with the advent of cheap
computing is modernized below:

(i) First, run an ordinary regression of yt on zt1, . . . , ztr (acting as if the errors
are uncorrelated). Retain the residuals, x̂t = yt −∑r

j=1 β̂ jztj.
(ii) Identify ARMA model(s) for the residuals x̂t.
(iii) Run weighted least squares (or MLE) on the regression model with

autocorrelated errors using the model specified in step (ii).
(iv) Inspect the residuals ŵt for whiteness, and adjust the model if necessary.

Example 3.32 Mortality, Temperature and Pollution
We consider the analyses presented in Example 2.2, relating mean adjusted
temperature Tt, and particulate levels Pt to cardiovascular mortality Mt. We
consider the regression model

Mt = β0 + β1t + β2Tt + β3T2
t + β4Pt + xt, (3.72)
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Fig. 3.17. Sample ACF and PACF of the mortality residuals indicating an AR(2) process.

where, for now, we assume that xt is white noise. The sample ACF and PACF
of the residuals from the ordinary least squares fit of (3.72) are shown in
Figure 3.17, and the results suggest an AR(2) model for the residuals. The next
step is to fit the model (3.72) where xt is AR(2),

xt = φ1xt−1 + φ2xt−2 + wt

and wt is white noise. The model can be fit using the arima function as follows
(partial output shown).
trend = time(cmort); temp = tempr - mean(tempr); temp2 = temp^2
fit = lm(cmort~trend + temp + temp2 + part, na.action=NULL)
acf2(resid(fit), 52) # implies AR2
sarima(cmort, 2,0,0, xreg=cbind(trend, temp, temp2, part) )
Coefficients:

ar1 ar2 intercept trend temp temp2 part
0.3848 0.4326 80.2116 -1.5165 -0.0190 0.0154 0.1545

s.e. 0.0436 0.0400 1.8072 0.4226 0.0495 0.0020 0.0272
sigma^2 estimated as 26.01: loglikelihood = -1549.04, aic = 3114.07

The residual analysis output from sarima (not shown) shows no obvious
departure of the residuals from whiteness.

Example 3.33 Regression with Lagged Variables (cont)
In Example 2.9 we fit the model

Rt = β0 + β1St−6 + β2Dt−6 + β3Dt−6 St−6 + wt,

where Rt is Recruitment, St is SOI, and Dt is a dummy variable that is 0 if
St < 0 and 1 otherwise. However, residual analysis indicates that the residuals
are not white noise. The sample (P)ACF of the residuals indicates that an
AR(2) model might be appropriate, which is similar to the results of
Example 3.32. We display partial results of the final model below.
dummy = ifelse(soi<0, 0, 1)
fish = ts.intersect(rec, soiL6=lag(soi,-6), dL6=lag(dummy,-6),

dframe=TRUE)
summary(fit <- lm(rec ~soiL6*dL6, data=fish, na.action=NULL))
attach(fish)
tsplot(resid(fit))
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acf2(resid(fit)) # indicates AR(2)
intract = soiL6*dL6 # interaction term
sarima(rec,2,0,0, xreg = cbind(soiL6, dL6, intract))
$ttable

Estimate SE t.value p.value
ar1 1.3624 0.0440 30.9303 0.0000
ar2 -0.4703 0.0444 -10.5902 0.0000
intercept 64.8028 4.1121 15.7590 0.0000
soiL6 8.6671 2.2205 3.9033 0.0001
dL6 -2.5945 0.9535 -2.7209 0.0068
intract -10.3092 2.8311 -3.6415 0.0003
detach(fish)

There appears to be some correlation left at the seasonal lags. The next section
discusses how to handle seasonal autocorrelation.

3.10 Seasonal ARIMA Models

In this section, we introduce several modifications made to the ARIMA model to
account for seasonal and nonstationary behavior. Often, the dependence on the
past tends to occur most strongly at multiples of some underlying seasonal lag s.
For example, with monthly economic data, there is a strong yearly component
occurring at lags that are multiples of s = 12, because of the strong connections
of all activity to the calendar year. Data taken quarterly will exhibit the yearly
repetitive period at s = 4 quarters. Natural phenomena such as temperature also
have strong components corresponding to seasons. Hence, the natural variability
of many physical, biological, and economic processes tends to match with
seasonal fluctuations. Because of this, it is appropriate to introduce
autoregressive and moving average polynomials that identify with the seasonal
lags. The resulting pure seasonal autoregressive moving average model, say,
ARMA(P, Q)s, then takes the form

ΦP(Bs)xt = ΘQ(Bs)wt, (3.73)

where the operators

ΦP(Bs) = 1−Φ1Bs −Φ2B2s − · · · −ΦPBPs (3.74)

and
ΘQ(Bs) = 1 + Θ1Bs + Θ2B2s + · · ·+ ΘQBQs (3.75)

are the seasonal autoregressive operator and the seasonal moving average
operator of orders P and Q, respectively, with seasonal period s.

Analogous to the properties of nonseasonal ARMA models, the pure seasonal
ARMA(P, Q)s is causal only when the roots of ΦP(zs) lie outside the unit circle,
and it is invertible only when the roots of ΘQ(zs) lie outside the unit circle.

Example 3.34 A Seasonal AR Series
A first-order seasonal autoregressive series that might run over months could be
written as

(1−ΦB12)xt = wt

or
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Fig. 3.18. Data generated from a seasonal (s = 12) AR(1), and the true ACF and PACF of the model
xt = .9xt−12 + wt.

xt = Φxt−12 + wt.

This model exhibits the series xt in terms of past lags at the multiple of the
yearly seasonal period s = 12 months. It is clear from the above form that
estimation and forecasting for such a process involves only straightforward
modifications of the unit lag case already treated. In particular, the causal
condition requires |Φ| < 1.

We simulated 3 years of data from the model with Φ = .9, and exhibit the
theoretical ACF and PACF of the model; see Figure 3.18.
set.seed(666)
phi = c(rep(0,11),.9)
sAR = arima.sim(list(order=c(12,0,0), ar=phi), n=37)
sAR = ts(sAR, freq=12)
layout(matrix(c(1,2, 1,3), nc=2))
par(mar=c(3,3,2,1), mgp=c(1.6,.6,0))
plot(sAR, axes=FALSE, main='seasonal AR(1)', xlab="year", type='c')
Months = c("J","F","M","A","M","J","J","A","S","O","N","D")
points(sAR, pch=Months, cex=1.25, font=4, col=1:4)
axis(1, 1:4)
abline(v=1:4, lty=2, col=gray(.6))
axis(2)
box()
ACF = ARMAacf(ar=phi, ma=0, 100)
PACF = ARMAacf(ar=phi, ma=0, 100, pacf=TRUE)
plot(ACF, type="h", xlab="lag", ylim=c(-.1,1))
abline(h=0)
plot(PACF, type="h", xlab="lag", ylim=c(-.1,1))
abline(h=0)

For the first-order seasonal (s = 12) MA model, xt = wt + Θwt−12, it is
easy to verify that

γ(0) = (1 + Θ2)σ2

γ(±12) = Θσ2

γ(h) = 0, otherwise.

Thus, the only nonzero correlation, aside from lag zero, is
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Table 3.3. Behavior of the ACF and PACF for Pure SARMA Models

AR(P)s MA(Q)s ARMA(P, Q)s

ACF* Tails off at lags ks, Cuts off after Tails off at
k = 1, 2, . . . , lag Qs lags ks

PACF* Cuts off after Tails off at lags ks Tails off at
lag Ps k = 1, 2, . . . , lags ks

*The values at nonseasonal lags h 6= ks, for k = 1, 2, . . ., are zero.

ρ(±12) = Θ/(1 + Θ2).

For the first-order seasonal (s = 12) AR model, using the techniques of the
nonseasonal AR(1), we have

γ(0) = σ2/(1−Φ2)
γ(±12k) = σ2Φk/(1−Φ2) k = 1, 2, . . .

γ(h) = 0, otherwise.

In this case, the only non-zero correlations are

ρ(±12k) = Φk, k = 0, 1, 2, . . . .

These results can be verified using the general result that

γ(h) = Φγ(h− 12) for h ≥ 1 .

For example, when h = 1, γ(1) = Φγ(11), but when h = 11, we have
γ(11) = Φγ(1), which implies that γ(1) = γ(11) = 0. In addition to these
results, the PACF have the analogous extensions from nonseasonal to seasonal
models. These results are demonstrated in Figure 3.18.

As an initial diagnostic criterion, we can use the properties for the pure
seasonal autoregressive and moving average series listed in Table 3.3. These
properties may be considered as generalizations of the properties for nonseasonal
models that were presented in Table 3.1.

In general, we can combine the seasonal and nonseasonal operators into a
multiplicative seasonal autoregressive moving average model, denoted by
ARMA(p, q)× (P, Q)s, and write

ΦP(Bs)φ(B)xt = ΘQ(Bs)θ(B)wt (3.76)

as the overall model. Although the diagnostic properties in Table 3.3 are not
strictly true for the overall mixed model, the behavior of the ACF and PACF tends
to show rough patterns of the indicated form. In fact, for mixed models, we tend
to see a mixture of the facts listed in Table 3.1 and Table 3.3. In fitting such
models, focusing on the seasonal autoregressive and moving average components
first generally leads to more satisfactory results.

Example 3.35 A Mixed Seasonal Model
Consider an ARMA(0, 1)× (1, 0)12 model

xt = Φxt−12 + wt + θwt−1,
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Fig. 3.19. ACF and PACF of the mixed seasonal ARMA model xt = .8xt−12 + wt − .5wt−1.

where |Φ| < 1 and |θ| < 1. Then, because xt−12, wt, and wt−1 are
uncorrelated, and xt is stationary, γ(0) = Φ2γ(0) + σ2

w + θ2σ2
w, or

γ(0) =
1 + θ2

1−Φ2 σ2
w.

In addition, multiplying the model by xt−h, h > 0, and taking expectations, we
have γ(1) = Φγ(11) + θσ2

w, and γ(h) = Φγ(h− 12), for h ≥ 2. Thus, the
ACF for this model is

ρ(12h) = Φh h = 1, 2, . . .

ρ(12h− 1) = ρ(12h + 1) =
θ

1 + θ2 Φh h = 0, 1, 2, . . . ,

ρ(h) = 0, otherwise.

The ACF and PACF for this model, with Φ = .8 and θ = −.5, are shown in
Figure 3.19. These type of correlation relationships, although idealized here,
are typically seen with seasonal data.

To reproduce Figure 3.19 in R, use the following commands:
phi = c(rep(0,11),.8)
ACF = ARMAacf(ar=phi, ma=-.5, 50)[-1] # [-1] removes 0 lag
PACF = ARMAacf(ar=phi, ma=-.5, 50, pacf=TRUE)
par(mfrow=c(1,2))
plot(ACF, type="h", xlab="lag", ylim=c(-.4,.8)); abline(h=0)
plot(PACF, type="h", xlab="lag", ylim=c(-.4,.8)); abline(h=0)

The pattern in the ACF is typical of seasonal time series. Try this on your own
and compare it to Figure 3.19.
par(mfrow=c(3,1),mar=c(2,2,0,0)+1, mgp=c(1.6,.6,0))
tsplot(birth) # monthly number of births in US
tsplot( diff(log(birth)) ) # the growth rate
acf1( diff(log(birth)), 61) # the sample ACF

Seasonal persistence occurs when the process is nearly periodic in the season.
For example, with average monthly temperatures over the years, each January
would be approximately the same, each February would be approximately the
same, and so on. In this case, we might think of average monthly temperature xt
as being modeled as
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Fig. 3.20. Seasonal persistence: The quarterly occupancy rate of Hawaiian hotels and the extracted
seasonal component.

xt = St + wt,

where St is a seasonal component that varies a little from one year to the next,
according to a random walk,

St = St−12 + vt.

In this model, wt and vt are uncorrelated white noise processes.
For another example, consider the quarterly occupancy rate of Hawaiian

hotels shown in Figure 3.20 (recall Example 2.15). The seasonal component,
shown below the data, is extracted by removing the trend component from the
data. Note that the occupancy rate for the first and third quarters is always up 2%
to 4%, while the occupancy rate for the second and fourth quarters is always
down 2% to 4%.

The tendency of data to follow this type of behavior will be exhibited in a
sample ACF that is large and decays very slowly at lags h = 12k, for
k = 1, 2, . . . . If we subtract the effect of successive years from each other, we
find that

(1− B12)xt = xt − xt−12 = vt + wt − wt−12.

This model is a stationary MA(1)12, and its ACF will have a peak only at lag 12.
In general, seasonal differencing can be indicated when the ACF decays slowly at
multiples of some season s, but is negligible between the periods. Then, a
seasonal difference of order D is defined as

∇D
s xt = (1− Bs)Dxt, (3.77)

where D = 1, 2, . . ., takes positive integer values. Typically, D = 1 is sufficient
to obtain seasonal stationarity. Incorporating these ideas into a general model
leads to the following definition.
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Definition 3.8 The multiplicative seasonal autoregressive integrated moving
average model, or SARIMA model is given by

ΦP(Bs)φ(B)∇D
s ∇dxt = δ + ΘQ(Bs)θ(B)wt, (3.78)

where wt is the usual Gaussian white noise process. The general model is
denoted as ARIMA(p, d, q)× (P, D, Q)s. The ordinary autoregressive and
moving average components are represented by polynomials φ(B) and θ(B) of
orders p and q, respectively, and the seasonal autoregressive and moving average
components by ΦP(Bs) and ΘQ(Bs) of orders P and Q and ordinary and
seasonal difference components by ∇d = (1− B)d and ∇D

s = (1− Bs)D.

Example 3.36 An SARIMAModel
Consider the following model, which often provides a reasonable representation
for seasonal, nonstationary, economic time series. We exhibit the equations for
the model, denoted by ARIMA(0, 1, 1)× (0, 1, 1)12 in the notation given
above, where the seasonal fluctuations occur every 12 months. Then, with
δ = 0, the model (3.78) becomes

∇12∇xt = Θ(B12)θ(B)wt

or
(1− B12)(1− B)xt = (1 + ΘB12)(1 + θB)wt. (3.79)

Expanding both sides of (3.79) leads to the representation

(1− B− B12 + B13)xt = (1 + θB + ΘB12 + ΘθB13)wt,

or in difference equation form

xt = xt−1 + xt−12 − xt−13 + wt + θwt−1 + Θwt−12 + Θθwt−13.

Note that the multiplicative nature of the model implies that the coefficient of
wt−13 is the product of the coefficients of wt−1 and wt−12 rather than a free
parameter. The multiplicative model assumption seems to work well with many
seasonal time series data sets while reducing the number of parameters that
must be estimated.

Selecting the appropriate model for a given set of data from all of those
represented by the general form (3.78) is a daunting task, and we usually think
first in terms of finding difference operators that produce a roughly stationary
series and then in terms of finding a set of simple autoregressive moving average
or multiplicative seasonal ARMA to fit the resulting residual series. Differencing
operations are applied first, and then the residuals are constructed from a series of
reduced length. Next, the ACF and the PACF of these residuals are evaluated.
Peaks that appear in these functions can often be eliminated by fitting an
autoregressive or moving average component in accordance with the general
properties of Table 3.1 and Table 3.3. In considering whether the model is
satisfactory, the diagnostic techniques discussed in Section 3.8 still apply.
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Example 3.37 Air Passengers
We consider the R data set AirPassengers, which are the monthly totals of
international airline passengers, 1949 to 1960, taken from Box & Jenkins
(1970). Various plots of the data and transformed data are shown in Figure 3.21
and were obtained as follows:
x = AirPassengers
lx = log(x); dlx = diff(lx); ddlx = diff(dlx, 12)
plot.ts(cbind(x,lx,dlx,ddlx), yax.flip=TRUE, main="")
# below of interest for showing seasonal RW (not shown here):
par(mfrow=c(2,1))
monthplot(dlx); monthplot(ddlx)

Note that x is the original series, which shows trend plus increasing variance.
The logged data are in lx, and the transformation stabilizes the variance. The
logged data are then differenced to remove trend, and are stored in dlx. It is
clear the there is still persistence in the seasons (i.e., dlxt ≈ dlxt−12), so that a
twelfth-order difference is applied and stored in ddlx. The transformed data
appears to be stationary and we are now ready to fit a model.

The sample ACF and PACF of ddlx (∇12∇ log xt) are shown in
Figure 3.22. The R code is:
acf2(ddlx, 50)

Seasonal: It appears that at the seasons, the ACF is cutting off a lag 1s
(s = 12), whereas the PACF is tailing off at lags 1s, 2s, 3s, 4s, . . . . These
results implies an SMA(1), P = 0, Q = 1, in the season (s = 12).
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Fig. 3.22. Sample ACF and PACF of ddlx (∇12∇ log xt).

Non-Seasonal: Inspecting the sample ACF and PACF at the lower lags, it
appears as though both are tailing off. This suggests an ARMA(1, 1) within the
seasons, p = q = 1.

Thus, we first try an ARIMA(1, 1, 1)× (0, 1, 1)12 on the logged data:
sarima(lx, 1,1,1, 0,1,1,12)
Coefficients:

ar1 ma1 sma1
0.1960 -0.5784 -0.5643

s.e. 0.2475 0.2132 0.0747
sigma^2 estimated as 0.001341
$AIC -5.5726 $AICc -5.55671 $BIC -6.510729

However, the AR parameter is not significant, so we should try dropping one
parameter from the within seasons part. In this case, we try both an
ARIMA(0, 1, 1)× (0, 1, 1)12 and an ARIMA(1, 1, 0)× (0, 1, 1)12 model:

sarima(lx, 0,1,1, 0,1,1,12)
Coefficients:

ma1 sma1
-0.4018 -0.5569

s.e. 0.0896 0.0731
sigma^2 estimated as 0.001348
$AIC -5.5813 $AICc -5.5663 $BIC -6.5401

sarima(lx, 1,1,0, 0,1,1,12)
Coefficients:

ar1 sma1
-0.3395 -0.5619

s.e. 0.0822 0.0748
sigma^2 estimated as 0.001367
$AIC -5.5671 $AICc -5.5520 $BIC -6.5258

All information criteria prefer the ARIMA(0, 1, 1)× (0, 1, 1)12 model, which
is the model displayed in (3.79). The residual diagnostics are shown in
Figure 3.23, and the model seems to fit well.

Finally, we forecast the logged data out twelve months, and the results are
shown in Figure 3.24.
sarima.for(lx, 12, 0,1,1, 0,1,1,12)
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set.
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Fig. 3.24. Twelve month forecast using the ARIMA(0, 1, 1) × (0, 1, 1)12 model on the logged air
passenger data set.

Problems

3.1 For an MA(1), xt = wt + θwt−1, show that |ρx(1)| ≤ 1/2 for any number θ.
For which values of θ does ρx(1) attain its maximum and minimum?

3.2 Let {wt; t = 0, 1, . . . } be a white noise process with variance σ2
w and let

|φ| < 1 be a constant. Consider the process x0 = w0, and
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xt = φxt−1 + wt, t = 1, 2, . . . .

We might use this method to simulate an AR(1) process from simulated white
noise.

(a) Show that xt = ∑t
j=0 φjwt−j for any t = 0, 1, . . . .

(b) Find the E(xt).
(c) Show that, for t = 0, 1, . . .,7

var(xt) =
σ2

w
1− φ2 (1− φ2(t+1))

(d) Show that, for h ≥ 0,8

cov(xt+h, xt) = φhvar(xt)

(e) Is xt stationary?
(f) Argue that, as t→ ∞, the process becomes stationary, so in a sense, xt is

“asymptotically stationary."
(g) Comment on how you could use these results to simulate n observations of a

stationary Gaussian AR(1) model from simulated iid N(0,1) values.
(h) Now suppose x0 = w0/

√
1− φ2. Is this process stationary? Hint: Show

var(xt) is constant.

3.3 Using Example 3.6 as a guide, identify the following models as ARMA(p, q)
models (watch out for parameter redundancy), and determine whether they are
causal and/or invertible. If the model is causal, use R to find the first 10
ψ-weights, and if the model is invertible, use R to find the first 10 π-weights.

(a) xt = .80xt−1 − .15xt−2 + wt − .30wt−1.
(b) xt = xt−1 − .50xt−2 + wt − wt−1.

3.4 For the AR(2) model given by xt = −.9xt−2 + wt, follow the R code in
Example 3.11 to find the roots of the autoregressive polynomial, find the pseudo
period of the process, and then plot the theoretical ACF, ρ(h).

3.5 (a) Compare the theoretical ACF and PACF of an ARMA(1, 1), an
ARMA(1, 0), and an ARMA(0, 1) series by plotting the ACFs and PACFs of
the three series for φ = .6, θ = .9. Comment on the capability of the ACF
and PACF to determine the order of the models. Hint: See the code for
Example 3.13.

(b) Use arima.sim to generate n = 100 observations from each of the three
models discussed in (a). Compute the sample ACFs and PACFs for each
model and compare it to the theoretical values. How do the results compare
with the general results given in Table 3.1?

(c) Repeat (b) but with n = 500. Comment.

3.6 Let ct be the cardiovascular mortality series (cmort) discussed in Chapter 2,
Example 2.2 and let xt = ∇ct be the differenced data.

7 ∑k
j=0 aj = (1− ak+1)/(1− a) for |a| 6= 1

8 Use footnote 1 to write xt+h in terms of xt and other stuff.
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(a) Plot xt and compare it to the actual data plotted in Figure 2.2. Why does
differencing seem reasonable in this case?

(b) Calculate and plot the sample ACF and PACF of xt and using Table 3.1, argue
that an AR(1) is appropriate for xt.

(c) Fit an AR(1) to xt using maximum likelihood (basically unconditional least
squares) as in Section 3.6. The easiest way to do this is to use sarima from
astsa. Comment on the significance of the regression parameter estimates of
the model. What is the estimate of the white noise variance?

(d) Examine the residuals and comment on whether or not you think the residuals
are white.

(e) Assuming the fitted model is the true model, find the forecasts over a
four-week horizon, xn

n+m, for m = 1, 2, 3, 4, and the corresponding 95%
prediction intervals; n = 508 here. The easiest way to do this is to use
sarima.for from astsa.

(f) Show how the values obtained in part (e) were calculated.
(g) What is the one-step-ahead forecast of the actual value of cardiovascular

mortality; i.e., what is cn
n+1?

3.7 For an AR(1) model, determine the general form of the m-step-ahead forecast
xn

n+m and show

E[(xn+m − xn
n+m)

2] = σ2
w

1− φ2m

1− φ2 .

3.8 Repeat the following numerical exercise five times. Generate n = 100 iid
N(0, 1) observations. Fit an ARMA(1, 1) model to the data. Compare the
parameter estimates in each case and explain the results.

3.9 Generate 10 realizations of length n = 200 each of an ARMA(1,1) process
with φ = .9, θ = .5 and σ2 = 1. Find the MLEs of the three parameters in each
case and compare the estimators to the true values.

3.10 Using Example 3.19 as your guide, find the Gauss–Newton procedure for
estimating the autoregressive parameter, φ, from the AR(1) model,
xt = φxt−1 + wt, given data x1, . . . , xn. Does this procedure produce the
unconditional or the conditional estimator? Hint: Write the model as
wt(φ) = xt − φxt−1; your solution should work out to be a non-recursive
procedure.

3.11 Verify that the IMA(1,1) model given in (3.64) can be inverted and written
as (3.65).

3.12 For the logarithm of the glacial varve data, say, xt, presented in
Example 3.20, use the first 100 observations and calculate the EWMA, xn

n+1,
discussed in Example 3.26, for n = 1, . . . , 100, using λ = .25, .50, and .75, and
plot the EWMAs and the data superimposed on each other. Comment on the
results.

3.13 Crude oil prices in dollars per barrel are in oil; see Appendix R for more
details. Fit an ARIMA(p, d, q) model to the growth rate performing all necessary
diagnostics. Comment.
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3.14 Fit an ARIMA(p, d, q) model to the global temperature data gtemp2 in
astsa performing all of the necessary diagnostics. After deciding on an
appropriate model, forecast (with limits) the next 10 years. Comment.

3.15 One of the series collected along with particulates, temperature, and
mortality described in Example 2.2 is the sulfur dioxide series, so2. Fit an
ARIMA(p, d, q) model to the data, performing all of the necessary diagnostics.
After deciding on an appropriate model, forecast the data into the future four time
periods ahead (about one month) and calculate 95% prediction intervals for each
of the four forecasts. Comment.

3.16 Let St represent the monthly sales data in sales (n = 150), and let Lt be the
leading indicator in lead.

(a) Fit an ARIMA model to St, the monthly sales data. Discuss your model fitting
in a step-by-step fashion, presenting your (A) initial examination of the data,
(B) transformations, if necessary, (C) initial identification of the dependence
orders and degree of differencing, (D) parameter estimation, (E) residual
diagnostics and model choice.

(b) Use the CCF and lag plots between∇St and∇Lt to argue that a regression of
∇St on ∇Lt−3 is reasonable. [Note: In lag2.plot(), the first named series is
the one that gets lagged.]

(c) Fit the regression model ∇St = β0 + β1∇Lt−3 + xt, where xt is an ARMA
process (explain how you decided on your model for xt). Discuss your results.
R help: If you have to work with various transformations of series in x and y,
first align the data:
dog = ts.intersect( lag(x,-11), diff(y,97) )
xnew = dog[,1] # dog has 2 columns, the first is lag(x,-11) ...
ynew = dog[,2] # ... and the second column is diff(y,97)
plot(dog) # now you can manipulate xnew and ynew simultaneously
lag2.plot(xnew, ynew, 5)

3.17 One of the remarkable technological developments in the computer industry
has been the ability to store information densely on a hard drive. In addition, the
cost of storage has steadily declined causing problems of too much data as
opposed to big data. The data set for this assignment is cpg, which consists of the
median annual retail price per GB of hard drives, say ct, taken from a sample of
manufacturers from 1980 to 2008.

(a) Plot ct and describe what you see.
(b) Argue that the curve ct versus t behaves like ct ≈ αeβt by fitting a linear

regression of log ct on t and then plotting the fitted line to compare it to the
logged data. Comment.

(c) Inspect the residuals of the linear regression fit and comment.
(d) Fit the regression again, but now using the fact that the errors are

autocorrelated. Comment.

3.18 Redo Problem 2.2 without assuming the error term is white noise.

3.19 Plot the theoretical ACF of the seasonal ARIMA(0, 1)× (1, 0)12 model
with Φ = .8 and θ = .5 out to lag 50.
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3.20 Fit a seasonal ARIMA model of your choice to the chicken price data in
chicken. Use the estimated model to forecast the next 12 months.

3.21 Fit a seasonal ARIMA model of your choice to the unemployment data,
unemp. Use the estimated model to forecast the next 12 months.

3.22 Fit a seasonal ARIMA model of your choice to the U.S. Live Birth Series,
birth. Use the estimated model to forecast the next 12 months.

3.23 Fit an appropriate seasonal ARIMA model to the log-transformed Johnson
and Johnson earnings series (jj) of Example 1.1. Use the estimated model to
forecast the next 4 quarters.



Chapter 4
Spectral Analysis and Filtering

4.1 Introduction
The cyclic behavior of data is the focus of this chapter. For example, in the
Johnson & Johnson data set in Figure 1.1, the predominant frequency of
oscillation is one cycle per year (4 quarters), or .25 cycles per observation. The
predominant frequency in the SOI and fish populations series in Figure 1.5 is also
one cycle per year, but this corresponds to 1 cycle every 12 months, or .083
cycles per observation. For simplicity, we measure frequency, ω, at cycles per
time point and discuss the implications of certain frequencies in terms of the
problem context. Of descriptive interest is the period of a time series, defined as
the number of points in a cycle, i.e., 1/ω. Hence, the predominant period of the
Johnson & Johnson series is 1/.25 or 4 quarters per cycle, whereas the
predominant period of the SOI series is 12 months per cycle. As stated in the
Preface, complex numbers (a pdf) may be helpful for this chapter.

4.2 Periodicity and Cyclical Behavior
The general notion of periodicity can be made more precise by introducing some
terminology. In order to define the rate at which a series oscillates, we first define
a cycle as one complete period of a sine or cosine function defined over a unit
time interval. As in (1.5), we consider the periodic process

xt = A cos(2πωt + φ) (4.1)

for t = 0,±1,±2, . . ., where ω is a frequency index, defined in cycles per unit
time with A determining the height or amplitude of the function and φ, called the
phase, determining the start point of the cosine function. We can introduce
random variation in this time series by allowing the amplitude and phase to vary
randomly.

As discussed in Example 2.10, for purposes of data analysis, it is easier to use
a trigonometric identity1 and write (4.1) as

1 cos(α± β) = cos(α) cos(β)∓ sin(α) sin(β).

http://tutorial.math.lamar.edu/pdf/Complex/ComplexNumbers.pdf
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xt = U1 cos(2πωt) + U2 sin(2πωt), (4.2)

where U1 = A cos φ and U2 = −A sin φ are often taken to be normally
distributed random variables. In this case, the amplitude is A =

√
(U2

1 + U2
2)

and the phase is φ = tan−1(−U2/U1). From these facts we can show that if,
and only if, in (4.1), A and φ are independent random variables, where A2 is
chi-squared with 2 degrees of freedom, and φ is uniformly distributed on
(−π, π), then U1 and U2 are independent, standard normal random variables.

If we assume that U1 and U2 are uncorrelated random variables with mean 0
and variance σ2, then xt in (4.2) is stationary with mean E(xt) = 0 and, writing
ct = cos(2πωt) and st = sin(2πωt), autocovariance function

γ(h) = cov(xt+h, xt) = cov(U1ct+h + U2st+h, U1ct + U2st)

= cov(U1ct+h, U1ct) + cov(U1ct+h, U2st)

+ cov(U2st+h, U1ct) + cov(U2st+h, U2st)

= σ2ct+hct + 0 + 0 + σ2st+hst = σ2 cos(2πωh),

(4.3)

using footnote 1 and noting that cov(U1, U2) = 0.
The random process in (4.2) is function of its frequency, ω. For ω = 1, the

series makes one cycle per time unit; for ω = .50, the series makes a cycle every
two time units; for ω = .25, every four units, and so on. In general, for data that
occur at discrete time points, we will need at least two points to determine a
cycle, so the highest frequency of interest is .5 cycles per point. This frequency is
called the folding frequency and defines the highest frequency that can be seen in
discrete sampling. Higher frequencies sampled this way will appear at lower
frequencies, called aliases; an example is the way a camera samples a rotating
wheel on a moving automobile in a movie, in which the wheel appears to be
rotating at a different rate. For example, movies are recorded at 24 frames per
second. If the camera is filming a wheel that is rotating at the rate of 24 cycles per
second (or 24 Hertz), the wheel will appear to stand still.

Consider a generalization of (4.2) that allows mixtures of periodic series with
multiple frequencies and amplitudes,

xt =
q

∑
k=1

[Uk1 cos(2πωkt) + Uk2 sin(2πωkt)] , (4.4)

where Uk1, Uk2, for k = 1, 2, . . . , q, are independent zero-mean random variables
with variances σ2

k , and the ωk are distinct frequencies. Notice that (4.4) exhibits
the process as a sum of independent components, with variance σ2

k for frequency
ωk. As in (4.3), it is easy to show (Problem 4.2) that the autocovariance function
of the process is

γ(h) =
q

∑
k=1

σ2
k cos(2πωkh), (4.5)

and we note the autocovariance function is the sum of periodic components with
weights proportional to the variances σ2

k . Hence, xt is a mean-zero stationary
processes with variance

γ(0) = var(xt) =
q

∑
k=1

σ2
k , (4.6)
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Fig. 4.1. Periodic components and their sum as described in Example 4.1.

which exhibits the overall variance as a sum of variances of each of the
component parts.

Example 4.1 A Periodic Series
Figure 4.1 shows an example of the mixture (4.4) with q = 3 constructed in the
following way. First, for t = 1, . . . , 100, we generated three series

xt1 = 2 cos(2πt 6/100) + 3 sin(2πt 6/100)
xt2 = 4 cos(2πt 10/100) + 5 sin(2πt 10/100)
xt3 = 6 cos(2πt 40/100) + 7 sin(2πt 40/100)

These three series are displayed in Figure 4.1 along with the corresponding
frequencies and squared amplitudes. For example, the squared amplitude of xt1
is A2 = 22 + 32 = 13. Hence, the maximum and minimum values that xt1 will
attain are ±

√
13 = ±3.61.

Finally, we constructed

xt = xt1 + xt2 + xt3

and this series is also displayed in Figure 4.1. We note that xt appears to behave
as some of the periodic series we have already seen. The systematic sorting out
of the essential frequency components in a time series, including their relative
contributions, constitutes one of the main objectives of spectral analysis.

The R code to reproduce Figure 4.1 is
x1 = 2*cos(2*pi*1:100*6/100) + 3*sin(2*pi*1:100*6/100)
x2 = 4*cos(2*pi*1:100*10/100) + 5*sin(2*pi*1:100*10/100)
x3 = 6*cos(2*pi*1:100*40/100) + 7*sin(2*pi*1:100*40/100)
x = x1 + x2 + x3
par(mfrow=c(2,2))
tsplot(x1, ylim=c(-10,10), main=expression(omega==6/100~~~A^2==13))
tsplot(x2, ylim=c(-10,10), main=expression(omega==10/100~~~A^2==41))
tsplot(x3, ylim=c(-10,10), main=expression(omega==40/100~~~A^2==85))
tsplot(x, ylim=c(-16,16), main="sum")

The model given in (4.4), along with its autocovariance given (4.5), is a
population construct. If the model is correct, our next step would be to estimate
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the variances σ2
k and frequencies ωk that form the model (4.4). In the next

example, we consider the problem of estimation of these quantities.

Example 4.2 Estimation and the Periodogram
For any time series sample x1, . . . , xn, where n is odd, we may write, exactly

xt = a0 +
(n−1)/2

∑
j=1

[
aj cos(2πt j/n) + bj sin(2πt j/n)

]
, (4.7)

for t = 1, . . . , n and suitably chosen coefficients. If n is even, the representation
(4.7) can be modified by summing to (n/2− 1) and adding an additional
component given by an/2 cos(2πt 1

2 ) = an/2(−1)t. The crucial point here is
that (4.7) is exact for any sample. Hence (4.4) may be thought of as an
approximation to (4.7), the idea being that many of the coefficients in (4.7) may
be close to zero.

Using the regression results from Chapter 2, the coefficients aj and bj are of
the form ∑n

t=1 xtztj/ ∑n
t=1 z2

tj, where ztj is either cos(2πt j/n) or
sin(2πt j/n). Using Problem 4.22, ∑n

t=1 z2
tj = n/2 when j/n 6= 0, 1/2, so

the regression coefficients in (4.7) can be written as

aj =
2
n

n

∑
t=1

xt cos(2πtj/n) and bj =
2
n

n

∑
t=1

xt sin(2πtj/n).

We then define the scaled periodogram to be

P(j/n) = a2
j + b2

j , (4.8)

because it indicates which frequency components in (4.7) are large in
magnitude and which components are small. The scaled periodogram is the
estimate of σ2

j corresponding to the sinusoid oscillating at a frequency of
ωj = j/n, or j cycles in n time points. These particular frequencies are called
the Fourier or fundamental frequencies. Large values of P(j/n) indicate which
frequencies ωj = j/n are predominant in the series, whereas small values of
P(j/n) may be associated with noise.

It is not necessary to run a large regression to obtain the values of aj and bj
because they can be computed quickly if n is a highly composite integer.
Although we will discuss it in more detail in Section 4.4, the discrete Fourier
transform (DFT) is a complex-valued weighted average of the data given by2

d(j/n) = n−1/2
n

∑
t=1

xt exp(−2πitj/n)

= n−1/2

(
n

∑
t=1

xt cos(2πtj/n)− i
n

∑
t=1

xt sin(2πtj/n)

)
,

(4.9)

for j = 0, 1, . . . , n− 1, where the frequencies j/n are called the Fourier or
fundamental frequencies. Because of a large number of redundancies in the

2 Useful information: Euler’s formula: eiα = cos(α) + i sin(α). Consequently, cos(α) = eiα+e−iα

2 ,
and sin(α) = eiα−e−iα

2i . Also, 1
i = −i because −i × i = 1. If z = a + ib is complex, then

|z|2 = zz = (a + ib)(a− ib) = a2 + b2.
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Fig. 4.2. The scaled periodogram (4.11) of the data generated in Example 4.1.

calculation, (4.9) may be computed quickly using the fast Fourier transform
(FFT). Note that

|d(j/n)|2 =
1
n

(
n

∑
t=1

xt cos(2πtj/n)

)2

+
1
n

(
n

∑
t=1

xt sin(2πtj/n)

)2

(4.10)
and it is this quantity that is called the periodogram. We may calculate the
scaled periodogram, (4.8), using the periodogram as

P(j/n) =
4
n
|d(j/n)|2. (4.11)

The scaled periodogram of the data, xt, simulated in Example 4.1 is shown
in Figure 4.2, and it clearly identifies the three components xt1, xt2, and xt3 of
xt. Note that

P(j/n) = P(1− j/n), j = 0, 1, . . . , n− 1,

so there is a mirroring effect at the folding frequency of 1/2; consequently, the
periodogram is typically not plotted for frequencies higher than the folding
frequency. In addition, note that the heights of the scaled periodogram shown in
the figure are

P( 6
100 ) = P( 94

100 ) = 13, P( 10
100 ) = P( 90

100 ) = 41, P( 40
100 ) = P( 60

100 ) = 85,

and P(j/n) = 0 otherwise. These are exactly the values of the squared
amplitudes of the components generated in Example 4.1. This outcome
suggests that the periodogram may provide some insight into the variance
components, (4.6), of a real set of data.

Assuming the simulated data, x, were retained from the previous example,
the R code to reproduce Figure 4.2 is
P = abs(2*fft(x)/100)^2; Fr = 0:99/100
plot(Fr, P, type="o", xlab="frequency", ylab="periodogram",

panel.first=grid())

Different packages scale the FFT differently, so it is a good idea to consult the
documentation. R computes it without the factor n−1/2 and with an additional
factor of e2πiωj that can be ignored because we will be interested in the squared
modulus.
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Fig. 4.3. Star magnitudes and part of the corresponding periodogram.

If we consider the data xt in Example 4.1 as a color (waveform) made up of
primary colors xt1, xt2, xt3 at various strengths (amplitudes), then we might
consider the periodogram as a prism that decomposes the color xt into its
primary colors (spectrum). Hence the term spectral analysis.

The following is an example using actual data.

Example 4.3 Star Magnitude
The data in Figure 4.3 are the magnitude of a star taken at midnight for 600
consecutive days. The data are taken from the classic text, The Calculus of
Observations, a Treatise on Numerical Mathematics, by E.T. Whittaker and G.
Robinson, (1923, Blackie & Son, Ltd.).

The periodogram for frequencies less than .08 is also displayed in the
figure; the periodogram for frequencies higher than .08 are essentially zero.
Note that the 29 day cycle and the 25 day cycle are the most prominent periodic
components of the data. The R code to reproduce Figure 4.3 is
n = length(star)
par(mfrow=c(2,1), mar=c(3,3,1,1), mgp=c(1.6,.6,0))
tsplot(star, ylab="star magnitude", xlab="day")
Per = Mod(fft(star-mean(star)))^2/n
Freq = (1:n -1)/n
plot(Freq[1:50], Per[1:50], type='h', lwd=3, ylab="Periodogram",

xlab="Frequency")
u = which.max(Per[1:50]) # 22 freq=21/600=.035 cycles/day
uu = which.max(Per[1:50][-u]) # 25 freq=25/600=.041 cycles/day
1/Freq[22]; 1/Freq[26] # period = days/cycle
text(.05, 7000, "24 day cycle"); text(.027, 9000, "29 day cycle")
### another way to find the two peaks is to order on Per
y = cbind(1:50, Freq[1:50], Per[1:50]); y[order(y[,3]),]

The periodogram, which was introduced in Schuster (1898) and used in
Schuster (1906) for studying the periodicities in the sunspot series (shown in
Figure 4.20 in the Problems section) is a sample based statistic. In Example 4.2
and Example 4.3, we discussed the fact that the periodogram may be giving us an
idea of the variance components associated with each frequency, as presented in
(4.6), of a time series. These variance components, however, are population
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parameters. The concepts of population parameters and sample statistics, as they
relate to spectral analysis of time series can be generalized to cover stationary
time series and that is the topic of the next section.

4.3 The Spectral Density

The idea that a time series is composed of periodic components, appearing in
proportion to their underlying variances, is fundamental in the spectral
representation. The result, called the Spectral Representation Theorem, is quite
technical, but the essence of the theorem is that (4.4) is approximately true for
any stationary time series.

The examples in the previous section are not generally realistic because time
series are rarely the superposition of a small number of distinct sinusoids. An
important situation we use repeatedly is the case when the autocovariance
function is absolutely summable, in which case there is a spectral density.

Property 4.1 The Spectral Density
If the autocovariance function, γ(h), of a stationary process satisfies

∞

∑
h=−∞

|γ(h)| < ∞, (4.12)

then it has the representation

γ(h) =
∫ 1/2

−1/2
e2πiωh f (ω) dω h = 0,±1,±2, . . . , (4.13)

as the inverse transform of the spectral density, which has the representation

f (ω) =
∞

∑
h=−∞

γ(h)e−2πiωh − 1/2 ≤ ω ≤ 1/2. (4.14)

The examples of the previous section were analogues of probability mass
functions, or discrete distributions. The pictures of the periodgram in Figure 4.2
and Figure 4.3 are akin to histograms. The spectral density is the analogue of the
probability density function, or of continuous distributions.

The fact that γ(h) is non-negative definite ensures f (ω) ≥ 0 for all ω. It
follows immediately from (4.14) that

f (ω) = f (−ω)

verifying the spectral density is an even function. Because of the evenness, we
will typically only plot f (ω) for ω ≥ 0. In addition, putting h = 0 in (4.13)
yields

γ(0) = var(xt) =
∫ 1/2

−1/2
f (ω) dω,

which expresses the total variance as the integrated spectral density over all of the
frequencies. We show later on, that a linear filter can isolate the variance in
certain frequency intervals or bands.



4.3 The Spectral Density 115

We note that the absolute summability condition, (4.12), is not satisfied by
(4.5), the example that we have used to introduce the idea of a spectral
representation. The condition, however, is satisfied for ARMA models. It is
illuminating to examine the spectral density for the series that we have looked at
in earlier discussions.

Example 4.4 White Noise Series
As a simple example, consider the theoretical power spectrum of a sequence of
uncorrelated random variables, wt, with variance σ2

w. A simulated set of data is
displayed in the top of Figure 1.7. Because the autocovariance function was
computed in Example 1.14 as γw(h) = σ2

w for h = 0, and zero, otherwise, it
follows from (4.14), that

fw(ω) = σ2
w

for −1/2 ≤ ω ≤ 1/2. Hence the process contains equal power at all
frequencies. This property is seen in the realization, which seems to contain all
different frequencies in a roughly equal mix. In fact, the name white noise
comes from the analogy to white light, which contains all frequencies in the
color spectrum at the same level of intensity. Figure 4.4 shows a plot of the
white noise spectrum for σ2

w = 1.

If xt is ARMA, its spectral density can be obtained explicitly using the fact
that it is a linear process, i.e., xt = ∑∞

j=0 ψjwt−j, where ∑∞
j=0 |ψj| < ∞. In the

following property, we exhibit the form of the spectral density of an ARMA
model. The proof of the property follows directly from the proof of a more
general result, Property 4.5, by using the additional fact that ψ(z) = θ(z)/φ(z).
The result is analogous to the fact that if X = aY, then var(X) = a2var(Y).

Property 4.2 The Spectral Density of ARMA
If xt is ARMA(p, q), φ(B)xt = θ(B)wt, its spectral density is given by

fx(ω) = σ2
w|ψ(e−2πiω)|2 = σ2

w
|θ(e−2πiω)|2

|φ(e−2πiω)|2
(4.15)

where φ(z) = 1−∑
p
k=1 φkzk, θ(z) = 1 + ∑

q
k=1 θkzk, and ψ(z) = ∑∞

k=0 ψkzk.

Example 4.5 Moving Average
As an example of a series that does not have an equal mix of frequencies, we
consider a moving average model. Specifically, consider the MA(1) model
given by

xt = wt + .5wt−1.

A sample realization is shown in the top of Figure 3.2 and we note that the
series has less of the higher or faster frequencies. The spectral density will
verify this observation.

The autocovariance function is displayed in Example 3.3, and for this
particular example, we have

γ(0) = (1 + .52)σ2
w = 1.25σ2

w; γ(±1) = .5σ2
w; γ(±h) = 0 for h > 1.

Substituting this directly into the definition given in (4.14), we have
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Fig. 4.4. Theoretical spectra of white noise (top), a first-order moving average (middle), and a second-
order autoregressive process (bottom).

f (ω) =
∞

∑
h=−∞

γ(h) e−2πiωh = σ2
w

[
1.25 + .5

(
e−2πiω + e2πiω

)]
= σ2

w [1.25 + cos(2πω)] .

(4.16)

We can also compute the spectral density using Property 4.2, which states
that for an MA, f (ω) = σ2

w|θ(e−2πiω)|2. Because θ(z) = 1 + .5z, we have

|θ(e−2πiω)|2 = |1 + .5e−2πiω |2 = (1 + .5e−2πiω)(1 + .5e2πiω)

= 1.25 + .5
(

e−2πiω + e2πiω
)

which leads to agreement with (4.16).
Plotting the spectrum for σ2

w = 1, as in the middle of Figure 4.4, shows the
lower or slower frequencies have greater power than the higher or faster
frequencies.

Example 4.6 A Second-Order Autoregressive Series
We now consider the spectrum of an AR(2) series of the form

xt − φ1xt−1 − φ2xt−2 = wt,

for the special case φ1 = 1 and φ2 = −.9. Figure 1.8 shows a sample
realization of such a process for σw = 1. We note the data exhibit a strong
periodic component that makes a cycle about every six points.

To use Property 4.2, note that θ(z) = 1, φ(z) = 1− z + .9z2 and
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|φ(e−2πiω)|2 = (1− e−2πiω + .9e−4πiω)(1− e2πiω + .9e4πiω)

= 2.81− 1.9(e2πiω + e−2πiω) + .9(e4πiω + e−4πiω)

= 2.81− 3.8 cos(2πω) + 1.8 cos(4πω).

Using this result in (4.15), we have that the spectral density of xt is

fx(ω) =
σ2

w
2.81− 3.8 cos(2πω) + 1.8 cos(4πω)

.

Setting σw = 1, the bottom of Figure 4.4 displays fx(ω) and shows a strong
power component at about ω = .16 cycles per point or a period between six
and seven cycles per point and very little power at other frequencies. In this
case, modifying the white noise series by applying the second-order AR
operator has concentrated the power or variance of the resulting series in a very
narrow frequency band.

To reproduce Figure 4.4, use the arma.spec script from astsa:
par(mfrow=c(3,1))
arma.spec(log="no", main="White Noise")
arma.spec(ma=.5, log="no", main="Moving Average")
arma.spec(ar=c(1,-.9), log="no", main="Autoregression")

The above examples motivate the use of the power spectrum for describing
the theoretical variance fluctuations of a stationary time series. Indeed, the
interpretation of the spectral density function as the variance of the time series
over a given frequency band gives us the intuitive explanation for its physical
meaning. The plot of the function f (ω) over the frequency argument ω can even
be thought of as an analysis of variance, in which the columns or block effects are
the frequencies, indexed by ω.

4.4 Periodogram and Discrete Fourier Transform

We are now ready to tie together the periodogram, which is the sample-based
concept presented in Section 4.2, with the spectral density, which is the
population-based concept of Section 4.3.

Definition 4.1 Given data x1, . . . , xn, we define the discrete Fourier transform
(DFT) to be

d(ωj) = n−1/2
n

∑
t=1

xte−2πiωjt (4.17)

for j = 0, 1, . . . , n− 1, where the frequencies ωj = j/n are called the Fourier
or fundamental frequencies.

If n is a highly composite integer (i.e., it has many factors), the DFT can be
computed by the fast Fourier transform (FFT) introduced in Cooley and
Tukey (1965). Sometimes it is helpful to exploit the inversion result for DFTs
which shows the linear transformation is one-to-one. For the inverse DFT we
have,

xt = n−1/2
n−1

∑
j=0

d(ωj)e
2πiωjt (4.18)
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for t = 1, . . . , n. The following example shows how to calculate the DFT and its
inverse in R for the data set {1, 2, 3, 4}; note that R writes a complex number
z = a + ib as a+bi.
(dft = fft(1:4)/sqrt(4))
[1] 5+0i -1+1i -1+0i -1-1i

(idft = fft(dft, inverse=TRUE)/sqrt(4))
[1] 1+0i 2+0i 3+0i 4+0i

(Re(idft)) # keep it real
[1] 1 2 3 4

We now define the periodogram as the squared modulus3 of the DFT.

Definition 4.2 Given data x1, . . . , xn, we define the periodogram to be

I(ωj) =
∣∣d(ωj)

∣∣2 (4.19)

for j = 0, 1, 2, . . . , n− 1.

Note that I(0) = nx̄2, where x̄ is the sample mean. Also, for j 6= 0,4

I(ωj) =
n−1

∑
h=−(n−1)

γ̂(h)e−2πiωjh. (4.20)

In view of (4.20), the periodogram, I(ωj), is the sample version of f (ωj)
given in (4.14). That is, we may think of the periodogram as the “sample spectral
density" of xt. Although (4.20) seems like a reasonable estimate of f (ω), recall
from Example 4.2 that I(ωj), for any j, is based on only 2 pieces of information
(degrees of freedom).

It is sometimes useful to work with the real and imaginary parts of the DFT
individually. To this end, we define the following transforms.

Definition 4.3 Given data x1, . . . , xn, we define the cosine transform

dc(ωj) = n−1/2
n

∑
t=1

xt cos(2πωjt) (4.21)

and the sine transform

ds(ωj) = n−1/2
n

∑
t=1

xt sin(2πωjt) (4.22)

where ωj = j/n for j = 0, 1, . . . , n− 1.

Note that dc(ωj) and ds(ωj) are averages like the sample mean, but with
difference weights (the sample mean has weights 1

n for each observation). Under
appropriate conditions, there is central limit theorem for these quantities. In
non-technical terms, the result is similar to the central limit theorem for sample
means, that is,

3 Recall that if z = a + ib, then z̄ = a− ib, and |z|2 = zz̄ = a2 + b2.
4 The DFTs of xt and of (xt − x̄) are the same except at the zero frequency. This follows because

∑n
t=1 exp(−2πit j

n ) = 0. Consequently,∣∣d(ωj)
∣∣2 = n−1 ∑n

t=1 ∑n
s=1(xt − x̄)(xs − x̄)e−2πiωj(t−s) =

n−1 ∑n−1
h=−(n−1) ∑n−|h|

t=1 (xt+|h| − x̄)(xt − x̄)e−2πiωjh, which is (4.20).
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dc(ωj)
·∼ N(0, 1

2 f (ωj)) and ds(ωj)
·∼ N(0, 1

2 f (ωj)) (4.23)

where ·∼ means approximately distributed as for n large. Moreover, it can be
shown that for large n, dc(ωj) ⊥ ds(ωj) ⊥ dc(ωk) ⊥ ds(ωk), as long as
ωj 6= ωk, where ⊥ is read is independent of.

We note that d(ωj) = dc(ωj)− i ds(ωj) and hence the periodogram is

I(ωj) = d2
c (ωj) + d2

s (ωj), (4.24)

which for large n is the sum of the squares of two independent normal random
variables, which we know has a chi-squared (χ2) distribution. Thus, for large
samples, I(ωj)

·∼ 1
2 f (ωj)χ

2
2, or equivalently,

2 I(ωj)

f (ωj)
·∼ χ2

2 , (4.25)

where χ2
2 is the chi-squared distribution with 2 degrees of freedom. Since the

mean and variance of a χ2
ν are ν and 2ν, respectively, it follows from (4.28a) that

E[I(ωj)] ≈ f (ωj) and var[I(ωj)] ≈ f 2(ωj). (4.26)

This is bad news because, while the periodgram is approximately unbiased, its
variance does not go to zero, and hence it is not consistent. In fact, no matter how
large n, the variance of the periodogram does not change. Contrast this with the
mean x̄ of a random sample of size n for which E[x̄] = µ and
var[x̄] = σ2/n→ 0 as n→ ∞.

The technical result regarding the large sample distribution of the
periodogram under general conditions is given in the following result.

Property 4.3 Distribution of the Periodogram Ordinates
If

xt =
∞

∑
j=−∞

ψjwt−j,
∞

∑
j=−∞

√
|j|
∣∣ψj
∣∣ < ∞ (4.27)

where wt ∼ iid(0, σ2
w), then for any collection of K distinct frequencies

ωk ∈ (0, 1/2) with ωk:n → ωk (where ωk:n is a fundamental frequency) as
n→ ∞,

2I(ωk:n)

f (ωk)
d→ iid χ2

2 (4.28)

provided f (ωk) > 0, for k = 1, . . . , K.

The distributional result (4.28) can be used to derive an approximate
confidence interval for the spectrum in the usual way. Let χ2

ν(α) denote the lower
α probability tail for the chi-squared distribution with ν degrees of freedom.
Then, an approximate 100(1− α)% confidence interval for the spectral density
function would be of the form

2 I(ωj:n)

χ2
2(1− α/2)

≤ f (ω) ≤
2 I(ωj:n)

χ2
2(α/2)

. (4.29)

The log transform is the variance stabilizing transformation. In this case, the
confidence intervals are of the form
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log I(ωj:n) + log 2− log χ2

2(1− α/2),

log I(ωj:n) + log 2− log χ2
2(α/2)

]
.

(4.30)

Often, nonstationary trends are present that should be eliminated before
computing the periodogram. Trends introduce extremely low frequency
components in the periodogram that tend to obscure the appearance at higher
frequencies. For this reason, it is usually conventional to center the data prior to a
spectral analysis using either mean-adjusted data of the form xt − x̄ to eliminate
the zero or d-c component or to use detrended data of the form xt − β̂1 − β̂2t.
Note that higher order polynomial regressions in t or nonparametric smoothing
(linear filtering) could be used in cases where the trend is nonlinear.

As previously indicated, it is often convenient to calculate the DFTs, and
hence the periodogram, using the fast Fourier transform algorithm. The FFT
utilizes a number of redundancies in the calculation of the DFT when n is highly
composite; that is, an integer with many factors of 2, 3, or 5, the best case being
when n = 2p is a factor of 2. Details may be found in Cooley and Tukey (1965).
To accommodate this property, we can pad the centered (or detrended) data of
length n to the next highly composite integer n′ by adding zeros, i.e., setting
xc

n+1 = xc
n+2 = · · · = xc

n′ = 0, where xc
t denotes the centered data. This means

that the fundamental frequency ordinates will be ωj = j/n′ instead of j/n. We
illustrate by considering the periodogram of the SOI and Recruitment series, as
has been given in Figure 1.5

. Recall that they are monthly series and n = 453 months. To find n′ in R, use
the command nextn(453) to see that n′ = 480 will be used in the spectral
analyses by default.

Example 4.7 Periodogram of SOI and Recruitment Series
Figure 4.5 shows the periodograms of each series, where the frequency axis is
labeled in multiples of ∆ = 1/12. As previously indicated, the centered data
have been padded to a series of length 480. We notice a narrow-band peak at
the obvious yearly (12 month) cycle, ω = 1∆ = 1/12. In addition, there is
considerable power in a wide band at the lower frequencies that is centered
around the four-year (48 month) cycle ω = 1

4∆ = 1/48 representing a possible
El Niño effect. This wide band activity suggests that the possible El Niño cycle
is irregular, but tends to be around four years on average. We will continue to
address this problem as we move to more sophisticated analyses.

Noting χ2
2(.025) = .05 and χ2

2(.975) = 7.38, we can obtain approximate
95% confidence intervals for the frequencies of interest. For example, the
periodogram of the SOI series is IS(1/12) = .97 at the yearly cycle. An
approximate 95% confidence interval for the spectrum fS(1/12) is then

[2(.97)/7.38, 2(.97)/.05] = [.26, 38.4],

which is too wide to be of much use. We do notice, however, that the lower
value of .26 is higher than any other periodogram ordinate, so it is safe to say
that this value is significant. On the other hand, an approximate 95% confidence
interval for the spectrum at the four-year cycle, fS(1/48), is

[2(.05)/7.38, 2(.05)/.05] = [.01, 2.12],
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Fig. 4.5. Periodogram of SOI and Recruitment, n = 453 (n′ = 480), where the frequency axis is
labeled in multiples of ∆ = 1/12. Note the common peaks at ω = 1∆ = 1/12, or one cycle per year
(12 months), and some larger values near ω = 1

4 ∆ = 1/48, or one cycle every four years (48 months).

which again is extremely wide, and with which we are unable to establish
significance of the peak.

We now give the R commands to reproduce Figure 4.5. To calculate and
graph the periodogram, we used the mvspec script from astsa, although R’s
spec.pgram can be used. In the code, we set log="no" because the script will
plot the periodogram on a log10 scale by default. Figure 4.5 displays a
bandwidth, which we discuss in the next section.
par(mfrow=c(2,1))
soi.per = mvspec(soi, log="no"); abline(v=1/4, lty="dotted")
rec.per = mvspec(rec, log="no"); abline(v=1/4, lty="dotted")

The confidence intervals for the SOI series at the yearly cycle,
ω = 1/12 = 40/480, and the possible El Niño cycle of four years
ω = 1/48 = 10/480 can be computed in R as follows:
soi.per$spec[40] # 0.97223; soi pgram at freq 1/12 = 40/480
soi.per$spec[10] # 0.05372; soi pgram at freq 1/48 = 10/480
# conf intervals - returned value:
U = qchisq(.025,2) # 0.05063
L = qchisq(.975,2) # 7.37775
2*soi.per$spec[10]/L # 0.01456
2*soi.per$spec[10]/U # 2.12220
2*soi.per$spec[40]/L # 0.26355
2*soi.per$spec[40]/U # 38.40108

The example above makes it clear that the periodogram as an estimator is
susceptible to large uncertainties, and we need to find a way to reduce the
variance. This result follows if we think about the periodogram, I(ωj) as an
estimator of the spectral density f (ω) is the sum of squares of only two random
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Fig. 4.6. Left:Histogram of a sample of n = 200 standard normals with 100 cells and with the standard
normal density superimposed. The periodogram is to the spectral density as the histogram is to the
normal density. Right: Histogram of the same data with much wider cells.

variables for any sample size. The solution to this dilemma is smoothing. As an
analogy to using the periodogram to estimate the spectral density, consider the
problem of taking a random sample and then trying to estimate a probability
density based on a histogram with many cells. This approach is demonstrated in
Figure 4.6.

4.5 Nonparametric Spectral Estimation

To continue the discussion that ended the previous section, we introduce a
frequency band, B, of L� n contiguous fundamental frequencies, centered
around frequency ωj = j/n, which is chosen close to a frequency of interest, ω.
Let

B =
{

ωj + k/n : k = 0,±1, . . . ,±m
}

, (4.31)

where
L = 2m + 1 (4.32)

is an odd number, chosen such that the spectral values in the interval B,

f (ωj + k/n), k = −m, . . . , 0, . . . , m

are approximately equal to f (ω). For example, to see a small section of the
AR(2) spectrum—near the peak—shown in Figure 4.4, use
arma.spec(ar=c(1,-.9), xlim=c(.15,.151), n.freq=100000)

which is displayed in Figure 4.7.
We now define an averaged (or smoothed) periodogram as the average of the

periodogram values, say,

f̄ (ω) =
1
L

m

∑
k=−m

I(ωj + k/n), (4.33)

over the band B. Under the assumption that the spectral density is fairly constant
in the band B, and in view of (4.28) we can show that under appropriate
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Fig. 4.7. A small section (near the peak) of the AR(2) spectrum shown in Figure 4.4 .

conditions, for large n, the periodograms in (4.33) are approximately distributed
as independent f (ω)χ2

2/2 random variables, for 0 < ω < 1/2, as long as we
keep L fairly small relative to n. Thus, under these conditions, L f̄ (ω) is the sum
of L approximately independent f (ω)χ2

2/2 random variables. It follows that, for
large n,

2L f̄ (ω)

f (ω)
·∼ χ2

2L. (4.34)

Now we have

E[ f̄ (ω)] ≈ f (ω) and var[ f̄ (ω)] ≈ f 2(ω)/L, (4.35)

which can be compared to (4.26). In this case, we have consistency if we let
L→ ∞ as n→ ∞, but L must grow much slower than n, of course (in fact,
L/n→ 0 as n→ ∞).

In this scenario, where we smooth the periodogram by simple averaging, the
width of the frequency interval defined by (4.31),

B =
L
n

, (4.36)

is called the bandwidth. Note (4.36) implies the degrees of freedom can be
expressed as

2L = 2Bn, (4.37)

or twice the time-bandwidth product. The result (4.34) can be rearranged to
obtain an approximate 100(1− α)% confidence interval of the form

2L f̄ (ω)

χ2
2L(1− α/2)

≤ f (ω) ≤ 2L f̄ (ω)

χ2
2L(α/2)

(4.38)

for the true spectrum, f (ω).
As previously discussed, the visual impact of a spectral density plot will be

improved by plotting the logarithm of the spectrum, which is the variance
stabilizing transformation in this situation. This phenomenon can occur when
regions of the spectrum exist with peaks of interest much smaller than some of the
main power components. For the log spectrum, we obtain an interval of the form[

log f̄ (ω) + log 2L− log χ2
2L(1− α/2),

log f̄ (ω) + log 2L− log χ2
2L(α/2)

]
. (4.39)
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Fig. 4.8. The averaged periodogram of the SOI and Recruitment series n = 453, n′ = 480, L =
9, d f = 17, showing common peaks at the four year period, ω = 1

4 ∆ = 1/48 cycles/month, the yearly
period, ω = 1∆ = 1/12 cycles/month and some of its harmonics ω = k∆ for k = 2, 3.

If zeros are appended before computing the spectral estimators, we need to
adjust the degrees of freedom and an approximation is to replace 2L by 2Ln/n′.
Hence, we define the adjusted degrees of freedom as

d f =
2Ln
n′

(4.40)

and use it instead of 2L in the confidence intervals (4.38) and (4.39). For
example, (4.38) becomes

d f f̄ (ω)

χ2
d f (1− α/2)

≤ f (ω) ≤ d f f̄ (ω)

χ2
d f (α/2)

. (4.41)

Before proceeding further, we pause to consider computing the average
periodograms for the SOI and Recruitment series, as shown in Figure 4.8.

Example 4.8 Averaged Periodogram for SOI and Recruitment
Generally, it is a good idea to try several bandwidths that seem to be compatible
with the general overall shape of the spectrum, as suggested by the
periodogram. The SOI and Recruitment series periodograms, previously
computed in Figure 4.5, suggest the power in the lower El Niño frequency
needs smoothing to identify the predominant overall period. Trying values of L
leads to the choice L = 9 as a reasonable value, and the result is displayed in
Figure 4.8.

The smoothed spectra shown in Figure 4.8 provide a sensible compromise
between the noisy version, shown in Figure 4.5, and a more heavily smoothed
spectrum, which might lose some of the peaks. An undesirable effect of
averaging can be noticed at the yearly cycle, ω = 1∆, where the narrow band
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Fig. 4.9. Figure 4.8 with the average periodogram ordinates plotted on a log10 scale. The display in
the upper right-hand corner represents a generic 95% confidence interval.

peaks that appeared in the periodograms in Figure 4.5 have been flattened and
spread out to nearby frequencies. We also notice, and have marked, the
appearance of harmonics of the yearly cycle, that is, frequencies of the form
ω = k∆ for k = 1, 2, . . . . Harmonics typically occur when a periodic
component is present, but not in a sinusoidal fashion; see Example 4.9.

Figure 4.8 can be reproduced in R using the following commands. The
basic call is to the function mvspec, which is available in astsa; alternately, use
R’s spec.pgram. To compute averaged periodograms, use the Daniell kernel,
and specify m, where L = 2m + 1 (L = 9 and m = 4 in this example). We will
explain the kernel concept later in this section, specifically just prior to
Example 4.10.
par(mfrow=c(2,1))
(k = kernel("daniell", 4))
soi.ave = mvspec(soi, k, log="no")
abline(v=c(.25,1,2,3), lty=2)
# Repeat above lines using rec in place of soi on line 3
soi.ave$bandwidth # = 0.225
soi.ave$df # = 16.9875

The displayed bandwidth (.225) is adjusted for the fact that the frequency
scale of the plot is in terms of cycles per year instead of cycles per month (the
original unit of the data). Using (4.36), the bandwidth in terms of months is
9/480 = .01875; the displayed value is simply converted to years,
.01875 cycles

month × 12 months
year = .225 cycles

year .
The adjusted degrees of freedom are d f = 2(9)(453)/480 ≈ 17. We can

use this value for the 95% confidence intervals, with χ2
d f (.025) = 7.56 and

χ2
d f (.975) = 30.17. Substituting into (4.41) gives the intervals in Table 4.1 for

the two frequency bands identified as having the maximum power. To examine
the two peak power possibilities, we may look at the 95% confidence intervals
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Table 4.1. Confidence Intervals for the Spectra of the SOI and Recruitment Series

Series ω Period Power Lower Upper

SOI 1/48 4 years .05 .03 .11
1/12 1 year .12 .07 .27

Recruits 1/48 4 years 6.59 3.71 14.82
×102 1/12 1 year 2.19 1.24 4.93

and see whether the lower limits are substantially larger than adjacent baseline
spectral levels. For example, the El Niño frequency of 48 months has lower
limits that exceed the values the spectrum would have if there were simply a
smooth underlying spectral function without the peaks. The relative distribution
of power over frequencies is different, with the SOI having less power at the
lower frequency, relative to the seasonal periods, and the recruit series having
relatively more power at the lower or El Niño frequency.

The entries in Table 4.1 for SOI can be obtained in R as follows:
df = soi.ave$df # df = 16.9875 (returned values)
U = qchisq(.025, df) # U = 7.555916
L = qchisq(.975, df) # L = 30.17425
soi.ave$spec[10] # 0.0495202
soi.ave$spec[40] # 0.1190800
# intervals
df*soi.ave$spec[10]/L # 0.0278789
df*soi.ave$spec[10]/U # 0.1113333
df*soi.ave$spec[40]/L # 0.0670396
df*soi.ave$spec[40]/U # 0.2677201
# repeat above commands with soi replaced by rec

Finally, Figure 4.9 shows the averaged periodograms in Figure 4.8 plotted
on a log10 scale. This is the default plot in R, and these graphs can be obtained
by removing the statement log="no". Notice that the default plot also shows a
generic confidence interval of the form (4.39) in the upper right-hand corner. To
use it, imagine placing the tick mark on the averaged periodogram ordinate of
interest; the resulting bar then constitutes an approximate 95% confidence
interval for the spectrum at that frequency. We note that displaying the
estimates on a log scale tends to emphasize the harmonic components.

Example 4.9 Harmonics
In the previous example, we saw that the spectra of the annual signals displayed
minor peaks at the harmonics. That is, there was a a large peak at
ω = 1∆ = 1/12 cycles/month (the one-year cycle) and minor peaks at its
harmonics ω = k∆ for k = 2, 3, . . . (two-, three-, and so on, cycles per year).
This will often be the case because most signals are not perfect sinusoids (or
perfectly cyclic). In this case, the harmonics are needed to capture the
non-sinusoidal behavior of the signal. As an example, consider the signal
formed in Figure 4.10 from a (fundamental) sinusoid oscillating at two cycles
per unit time along with the second through sixth harmonics at decreasing
amplitudes. In particular, the signal was formed as

xt = sin(2π2t) + .5 sin(2π4t) + .4 sin(2π6t)

+ .3 sin(2π8t) + .2 sin(2π10t) + .1 sin(2π12t) (4.42)
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Fig. 4.10. A signal (thick solid line) formed by a fundamental sinusoid (thin solid line) oscillating at
two cycles per unit time and its harmonics as specified in (4.42).

for 0 ≤ t ≤ 1. Notice that the signal is non-sinusoidal in appearance and rises
quickly then falls slowly. The code for Figure 4.10 is:
t = seq(0, 1, by=1/200)
amps = c(1, .5, .4, .3, .2, .1)
x = matrix(0, 201, 6)
for (j in 1:6) x[,j] = amps[j]*sin(2*pi*t*2*j)
x = ts(cbind(x, rowSums(x)), start=0, deltat=1/200)
ts.plot(x, lty=c(1:6, 1), lwd=c(rep(1,6), 2), ylab="Sinusoids")
names = c("Fundamental","2nd Harmonic","3rd Harmonic","4th Harmonic", "5th

Harmonic", "6th Harmonic", "Formed Signal")
legend("topright", names, lty=c(1:6, 1), lwd=c(rep(1,6), 2) )

Example 4.8 points out the necessity for having some relatively systematic
procedure for deciding whether peaks are significant. The question of deciding
whether a single peak is significant usually rests on establishing what we might
think of as a baseline level for the spectrum, defined rather loosely as the shape
that one would expect to see if no spectral peaks were present. This profile can
usually be guessed by looking at the overall shape of the spectrum that includes
the peaks; usually, a kind of baseline level will be apparent, with the peaks
seeming to emerge from this baseline level. If the lower confidence limit for the
spectral value is still greater than the baseline level at some predetermined level
of significance, we may claim that frequency value as a statistically significant
peak. To be consistent with our stated indifference to the upper limits, we might
use a one-sided confidence interval.

Care must be taken when we make a decision about the bandwidth B over
which the spectrum will be essentially constant. Taking too broad a band will
tend to smooth out valid peaks in the data when the constant variance assumption
is not met over the band. Taking too narrow a band will lead to confidence
intervals so wide that peaks are no longer statistically significant. Thus, we note
that there is a conflict here between variance properties or bandwidth stability,
which can be improved by increasing B and resolution, which can be improved by
decreasing B. A common approach is to try a number of different bandwidths and
to look qualitatively at the spectral estimators for each case.

To address the problem of resolution, it should be evident that the flattening
of the peaks in Figure 4.8 and Figure 4.9 was due to the fact that simple averaging
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was used in computing f̄ (ω) defined in (4.33). There is no particular reason to
use simple averaging, and we might improve the estimator by employing a
weighted average, say

f̂ (ω) =
m

∑
k=−m

hk I(ωj + k/n), (4.43)

using the same definitions as in (4.33) but where the weights hk > 0 satisfy

m

∑
k=−m

hk = 1.

In particular, it seems reasonable that the resolution of the estimator will improve
if we use weights that decrease as distance from the center weight h0 increases;
we will return to this idea shortly. To obtain the averaged periodogram, f̄ (ω), in
(4.43), set hk = L−1, for all k, where L = 2m + 1. The asymptotic theory
established for f̄ (ω) still holds for f̂ (ω) provided that the weights satisfy the
additional condition that if m→ ∞ as n→ ∞ but m/n→ 0, then

m

∑
k=−m

h2
k → 0.

Under these conditions, for n large, we have

E[ f̂ (ω)] ≈ f (ω) and var[ f̂ (ω)] ≈ f 2(ω)
m

∑
k=−m

h2
k (4.44)

which can be compared to (4.35); as before, we have that f̂ (ω) is consistent. We
have already seen this result in the case of f̄ (ω), where the weights are constant,
hk = L−1, in which case ∑m

k=−m h2
k = L−1. The distributional properties of

(4.43) are more difficult now because f̂ (ω) is a weighted linear combination of
asymptotically independent χ2 random variables. An approximation that seems
to work well is to replace L by

(
∑m

k=−m h2
k
)−1. That is, define

Lh =

(
m

∑
k=−m

h2
k

)−1

(4.45)

and use the approximation

2Lh f̂ (ω)

f (ω)
·∼ χ2

2Lh
. (4.46)

In analogy to (4.36), we will define the bandwidth in this case to be

B =
Lh
n

. (4.47)

Using the approximation (4.46) we obtain an approximate 100(1− α)%
confidence interval of the form

2Lh f̂ (ω)

χ2
2Lh

(1− α/2)
≤ f (ω) ≤ 2Lh f̂ (ω)

χ2
2Lh

(α/2)
(4.48)
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Fig. 4.11. Modified Daniell kernel weights used in Example 4.10

for the true spectrum, f (ω). If the data are padded to n′, then replace 2Lh in
(4.48) with d f = 2Lhn/n′ as in (4.40).

An easy way to generate the weights in R is by repeated use of the Daniell
kernel. For example, with m = 1 and L = 2m + 1 = 3, the Daniell kernel has
weights {hk} = { 1

3 , 1
3 , 1

3}; applying this kernel to a sequence of numbers, {ut},
produces

ût =
1
3 ut−1 +

1
3 ut +

1
3 ut+1.

We can apply the same kernel again to the ût,̂̂ut =
1
3 ût−1 +

1
3 ût +

1
3 ût+1,

which simplifies to

̂̂ut =
1
9 ut−2 +

2
9 ut−1 +

3
9 ut +

2
9 ut+1 +

1
9 ut+2.

The modified Daniell kernel puts half weights at the end points, so with m = 1
the weights are {hk} = { 1

4 , 2
4 , 1

4} and

ût =
1
4 ut−1 +

1
2 ut +

1
4 ut+1.

Applying the same kernel again to ût yieldŝ̂ut =
1

16 ut−2 +
4

16 ut−1 +
6

16 ut +
4

16 ut+1 +
1
16 ut+2.

These coefficients can be obtained in R by issuing the kernel command. For
example, kernel("modified.daniell", c(1,1)) would produce the coefficients
of the last example.

Example 4.10 Smoothed Periodogram for SOI and Recruitment
In this example, we estimate the spectra of the SOI and Recruitment series
using the smoothed periodogram estimate in (4.43). We used a modified
Daniell kernel twice, with m = 3 both times. This yields
Lh = 1/ ∑ h2

k = 9.232, which is close to the value of L = 9 used in
Example 4.8. In this case, the bandwidth is B = 9.232/480 = .019 and the
modified degrees of freedom is d f = 2Lh453/480 = 17.43. The weights, hk,
can be obtained and graphed in R as follows; see Figure 4.11.
kernel("modified.daniell", c(3,3)) # for a list
plot(kernel("modified.daniell", c(3,3))) # for a plot
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Fig. 4.12. Smoothed (tapered) spectral estimates of the SOI and Recruitment series; see Example 4.10
for details.

The resulting spectral estimates can be viewed in Figure 4.12 and we notice that
the estimates more appealing than those in Figure 4.8. Figure 4.12 was
generated in R as follows:
k = kernel("modified.daniell", c(3,3))
soi.smo = mvspec(soi, k, taper=.1, log="no") # a taper is used
abline(v=c(1/4,1), lty="dotted")
## Repeat above lines with rec replacing soi in line 3
df = soi.smo$df # df = 17.42618
soi.smo$bandwidth # Bw = 0.2308103 = 12*9.232/480

Reissuing the mvspec commands with log="no" removed will result in a figure
similar to Figure 4.9; see Figure 4.12. Finally, we mention that the modified
Daniell kernel is used by default. For example, an easier way to obtain soi.smo
is to issue the command:
soi.smo = mvspec(soi, taper=.1, spans=c(7,7))

Notice that spans is a vector of odd integers, given in terms of L = 2m + 1
instead of m. These values give the widths of the modified Daniell smoother to
be used to smooth the periodogram.

Tapering
We are now ready to briefly introduce the concept of tapering; a more

detailed discussion may be found in Bloomfield (2000, §9.5). Suppose xt is a
mean-zero, stationary process with spectral density fx(ω). If we replace the
original series by the tapered series

yt = htxt, (4.49)

for t = 1, 2, . . . , n, use the modified DFT

dy(ωj) = n−1/2
n

∑
t=1

htxte−2πiωjt, (4.50)
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Fig. 4.13. Averaged Fejér window (top row) and the corresponding cosine taper window (bottom row)
for L = 9, n = 480. The extra tic marks on the horizontal axis of the left-hand plots exhibit the
predicted bandwidth, Bw = 9/480 = .01875.

and let Iy(ωj) = |dy(ωj)|2, we will obtain

E[Iy(ωj)] =
∫ 1/2

−1/2
Wn(ωj −ω) fx(ω) dω. (4.51)

The value Wn(ω) is called a spectral window because, in view of (4.51), it is
determining which part of the spectral density fx(ω) is being “seen” by the
estimator Iy(ωj) on average. In the case that ht = 1 for all t, Iy(ωj) = Ix(ωj) is
simply the periodogram of the data and the window is

Wn(ω) =
sin2(nπω)

n sin2(πω)
(4.52)

with Wn(0) = n, which is known as the Fejér or modified Bartlett kernel. If we
consider the averaged periodogram in (4.33), namely

f̄x(ω) =
1
L

m

∑
k=−m

Ix(ωj + k/n),

the window, Wn(ω), in (4.51) will take the form

Wn(ω) =
1

nL

m

∑
k=−m

sin2[nπ(ω + k/n)]
sin2[π(ω + k/n)]

. (4.53)

Tapers generally have a shape that enhances the center of the data relative to
the extremities, such as a cosine bell of the form

ht = .5
[

1 + cos
(

2π(t− t)
n

)]
, (4.54)
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Fig. 4.14. Smoothed spectral estimates of the SOI without tapering (dashed line) and with full tapering
(solid line); see Example 4.11. The insert shows a full cosine bell taper, (4.54), with horizontal axis
(t− t̄)/n, for t = 1, . . . , n.

where t = (n + 1)/2, favored by Blackman and Tukey (1959). In Figure 4.13,
we have plotted the shapes of two windows, Wn(ω), for n = 480 and L = 9,
when (i) ht ≡ 1, in which case, (4.53) applies, and (ii) ht is the cosine taper in
(4.54). In both cases the predicted bandwidth should be Bw = 9/480 = .01875
cycles per point, which corresponds to the “width" of the windows shown in
Figure 4.13. Both windows produce an integrated average spectrum over this
band but the untapered window in the top panels shows considerable ripples over
the band and outside the band. The ripples outside the band are called sidelobes
and tend to introduce frequencies from outside the interval that may contaminate
the desired spectral estimate within the band. For example, a large dynamic range
for the values in the spectrum introduces spectra in contiguous frequency
intervals several orders of magnitude greater than the value in the interval of
interest. This effect is sometimes called leakage. Figure 4.13 emphasizes the
suppression of the sidelobes in the Fejér kernel when a cosine taper is used.

Example 4.11 The Effect of Tapering the SOI Series
In this example, we examine the effect of tapering on the estimate of the
spectrum of the SOI series. The results for the Recruitment series are similar.
Figure 4.14 shows two spectral estimates plotted on a log scale. The degree of
smoothing here is the same as in Example 4.10. The dashed line in Figure 4.14
shows the estimate without any tapering and hence it is the same as the
estimated spectrum displayed in the top of Figure 4.12. The solid line shows the
result with full tapering. Notice that the tapered spectrum does a better job in
separating the yearly cycle (ω = 1) and the El Niño cycle (ω = 1/4).

The following R session was used to generate Figure 4.14. We note that, by
default, mvspec does not taper. For full tapering, we use the argument taper=.5
to instruct mvspec to taper 50% of each end of the data; any value between 0
and .5 is acceptable.
s0 = mvspec(soi, spans=c(7,7), plot=FALSE) # no taper
s50 = mvspec(soi, spans=c(7,7), taper=.5, plot=FALSE) # full taper
plot(s0$freq, s0$spec, log="y", type="l", lty=2, ylab="spectrum",

xlab="frequency") # dashed line
lines(s50$freq, s50$spec) # solid line
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4.6 Parametric Spectral Estimation

The methods of Section 4.5 lead to estimators generally referred to as
nonparametric spectra because no assumption is made about the parametric form
of the spectral density. In Property 4.2, we exhibited the spectrum of an ARMA
process and we might consider basing a spectral estimator on this function,
substituting the parameter estimates from an ARMA(p, q) fit on the data into the
formula for the spectral density fx(ω) given in (4.15). Such an estimator is called
a parametric spectral estimator. For convenience, a parametric spectral estimator
is obtained by fitting an AR(p) to the data, where the order p is determined by
one of the model selection criteria, such as AIC, AICc, and BIC, defined in
(2.15)-(2.17). Parametric autoregressive spectral estimators will often have
superior resolution in problems when several closely spaced narrow spectral
peaks are present and are preferred by engineers for a broad variety of problems
(see Kay, 1988). The development of autoregressive spectral estimators has been
summarized by Parzen (1983).

If φ̂1, φ̂2, . . . , φ̂p and σ̂2
w are the estimates from an AR(p) fit to xt, then based

on Property 4.2, a parametric spectral estimate of fx(ω) is attained by
substituting these estimates into (4.15), that is,

f̂x(ω) =
σ̂2

w

|φ̂(e−2πiω)|2
, (4.55)

where
φ̂(z) = 1− φ̂1z− φ̂2z2 − · · · − φ̂pzp. (4.56)

An interesting fact about rational spectra of the form (4.15) is that any spectral
density can be approximated, arbitrarily close, by the spectrum of an AR process.

Property 4.4 AR Spectral Approximation
Let g(ω) be the spectral density of a stationary process, xt. Then, given

ε > 0, there is an AR(p) representation

xt =
p

∑
k=1

φkxt−k + wt

where wt is white noise with variance σ2
w, such that

| fx(ω)− g(ω)| < ε for all ω ∈ [−1/2, 1/2].

Moreover, p is finite and the roots of φ(z) = 1−∑
p
k=1 φkzk are outside the unit

circle.

One drawback, however, is that the property does not tell us how large p must
be before the approximation is reasonable; in some situations p may be extremely
large. Property 4.4 also holds for MA and for ARMA processes in general, and a
proof of the result may be found in Fuller (1996, Ch 4). We demonstrate the
technique in the following example.
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Fig. 4.15. Model selection criteria AIC and BIC as a function of order p for autoregressive models
fitted to the SOI series.

Example 4.12 Autoregressive Spectral Estimator for SOI
Consider obtaining results comparable to the nonparametric estimators shown
in Figure 4.8 for the SOI series. Fitting successively higher order AR(p) models
for p = 1, 2, . . . , 30 yields a minimum BIC and a minimum AIC at p = 15, as
shown in Figure 4.15. We can see from Figure 4.15 that BIC is very definite
about which model it chooses; that is, the minimum BIC is very distinct. On the
other hand, it is not clear what is going to happen with AIC; that is, the
minimum is not so clear, and there is some concern that AIC will start
decreasing after p = 30. Minimum AICc selects the p = 15 model, but suffers
from the same uncertainty as AIC. The spectrum is shown in Figure 4.16, and
we note the strong peaks near the four year and one year cycles as in the
nonparametric estimates obtained in Section 4.5. In addition, the harmonics of
the yearly period are evident in the estimated spectrum.

To perform a similar analysis in R, the command spec.ar can be used to fit
the best model via AIC and plot the resulting spectrum. A quick way to obtain
the AIC values is to run the ar command as follows.
spaic = spec.ar(soi, log="no") # min AIC spec
abline(v=frequency(soi)*1/52, lty="dotted") # El Nino Cycle
(soi.ar = ar(soi, order.max=30)) # estimates and AICs
dev.new()
plot(1:30, soi.ar$aic[-1], type="o") # plot AICs

R works only with the AIC in this case. To generate Figure 4.15 we used the
following code to obtain AIC, AICc, and BIC. Because AIC and AICc are
nearly identical in this example, we only graphed AIC and BIC+1; we added 1
to the BIC to reduce white space in the graphic.
n = length(soi)
c() -> AIC -> AICc -> BIC
for (k in 1:30){
sigma2 = ar(soi, order=k, aic=FALSE)$var.pred
BIC[k] = log(sigma2) + (k*log(n)/n)
AICc[k] = log(sigma2) + ((n+k)/(n-k-2))
AIC[k] = log(sigma2) + ((n+2*k)/n)
}
IC = cbind(AIC, BIC+1)
ts.plot(IC, type="o", xlab="p", ylab="AIC / BIC")
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Fig. 4.16. Autoregressive spectral estimator for the SOI series using the AR(15) model selected by AIC,
AICc, and BIC.

4.7 Linear Filters

Some of the examples of the previous sections have hinted at the possibility the
distribution of power or variance in a time series can be modified by making a
linear transformation. In this section, we explore that notion further by defining a
linear filter and showing how it can be used to extract signals from a time series.
The linear filter modifies the spectral characteristics of a time series in a
predictable way, and the systematic development of methods for taking advantage
of the special properties of linear filters is an important topic in time series
analysis.

A linear filter uses a set of specified coefficients aj, for j = 0,±1,±2, . . ., to
transform an input series, xt, producing an output series, yt, of the form

yt =
∞

∑
j=−∞

ajxt−j,
∞

∑
j=−∞

|aj| < ∞. (4.57)

The form (4.57) is also called a convolution in some statistical contexts. The
coefficients, collectively called the impulse response function, are required to
satisfy absolute summability so yt in (4.57) exists as a limit in mean square and
the infinite Fourier transform

Ayx(ω) =
∞

∑
j=−∞

aj e−2πiωj , (4.58)

called the frequency response function, is well defined. We have already
encountered several linear filters, for example, the simple three-point moving
average in Example 1.7, which can be put into the form of (4.57) by letting
a−1 = a0 = a1 = 1/3 and taking aj = 0 for |j| ≥ 2.

The importance of the linear filter stems from its ability to enhance certain
parts of the spectrum of the input series. We now state the following result.
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Fig. 4.17. SOI series (top) compared with the differenced SOI (middle) and a centered 12-month moving
average (bottom).

Property 4.5 Output Spectrum of a Filtered Stationary Series
Assuming existence of spectra, the spectrum of the filtered output yt in (4.57)

is related to the spectrum of the input xt by

fyy(ω) = |Ayx(ω)|2 fxx(ω), (4.59)

where the frequency response function Ayx(ω) is defined in (4.58).

The result (4.59) enables us to calculate the exact effect on the spectrum of
any given filtering operation. This important property shows the spectrum of the
input series is changed by filtering and the effect of the change can be
characterized as a frequency-by-frequency multiplication by the squared
magnitude of the frequency response function. Again, an obvious analogy to a
property of the variance in classical statistics holds, namely, if x is a random
variable with variance σ2

x , then y = ax will have variance σ2
y = a2σ2

x , so the
variance of the linearly transformed random variable is changed by multiplication
by a2 in much the same way as the linearly filtered spectrum is changed in (4.59).

Finally, we mention that Property 4.2, which was used to get the spectrum of
an ARMA process, is just a special case of Property 4.5 where in (4.57), xt = wt
is white noise, in which case fxx(ω) = σ2

w, and aj = ψj, in which case

Ayx(ω) = ψ(e−2πiω) = θ(e−2πiω)
/

φ(e−2πiω).
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Example 4.13 First Difference and Moving Average Filters
We illustrate the effect of filtering with two common examples, the first
difference filter

yt = ∇xt = xt − xt−1

and the symmetric moving average filter

yt =
1

24
(

xt−6 + xt+6
)
+ 1

12

5

∑
r=−5

xt−r,

which is a modified Daniell kernel with m = 6. The results of filtering the SOI
series using the two filters are shown in the middle and bottom panels of
Figure 4.17. Notice that the effect of differencing is to roughen the series
because it tends to retain the higher or faster frequencies. The centered moving
average smoothes the series because it retains the lower frequencies and tends
to attenuate the higher frequencies. In general, differencing is an example of a
high-pass filter because it retains or passes the higher frequencies, whereas the
moving average is a low-pass filter because it passes the lower or slower
frequencies.

Notice that the slower periods are enhanced in the symmetric moving
average and the seasonal or yearly frequencies are attenuated. The filtered series
makes about 9 cycles in the length of the data (about one cycle every 52
months) and the moving average filter tends to enhance or extract the signal that
is associated with El Niño. Moreover, by the low-pass filtering of the data, we
get a better sense of the El Niño effect and its irregularity.

Now, having done the filtering, it is essential to determine the exact way in
which the filters change the input spectrum. We shall use (4.58) and (4.59) for
this purpose. The first difference filter can be written in the form (4.57) by
letting a0 = 1, a1 = −1, and ar = 0 otherwise. This implies that

Ayx(ω) = 1− e−2πiω,

and the squared frequency response becomes
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|Ayx(ω)|2 = (1− e−2πiω)(1− e2πiω) = 2[1− cos(2πω)]. (4.60)

The top panel of Figure 4.18 shows that the first difference filter will attenuate
the lower frequencies and enhance the higher frequencies because the
multiplier of the spectrum, |Ayx(ω)|2, is large for the higher frequencies and
small for the lower frequencies. Generally, the slow rise of this kind of filter
does not particularly recommend it as a procedure for retaining only the high
frequencies.

For the centered 12-month moving average, we can take a−6 = a6 = 1/24,
ak = 1/12 for −5 ≤ k ≤ 5 and ak = 0 elsewhere. Substituting and
recognizing the cosine terms gives

Ayx(ω) = 1
12

[
1 + cos(12πω) + 2

5

∑
k=1

cos(2πωk)
]
. (4.61)

Plotting the squared frequency response of this function as in Figure 4.18
shows that we can expect this filter to cut most of the frequency content above
.05 cycles per point. This corresponds to eliminating periods shorter than
T = 1/.05 = 20 points. In particular, this drives down the yearly components
with periods of T = 12 months and enhances the El Niño frequency, which is
somewhat lower. The filter is not completely efficient at attenuating high
frequencies; some power contributions are left at higher frequencies, as shown
in the function |Ayx(ω)|2 and in the spectrum of the moving average shown in
Figure 4.4.

The following R session shows how to filter the data, perform the spectral
analysis of a filtered series, and plot the squared frequency response curves of
the difference and moving average filters.
par(mfrow=c(3,1), mar=c(3,3,1,1), mgp=c(1.6,.6,0))
tsplot(soi) # plot data
tsplot(diff(soi)) # plot first difference
k = kernel("modified.daniell", 6) # filter weights
tsplot(soif <- kernapply(soi, k)) # plot 12 month filter
dev.new()
spectrum(soif, spans=9, log="no") # spectral analysis (not shown)
abline(v=12/52, lty="dashed")
dev.new()
##-- frequency responses --##
par(mfrow=c(2,1), mar=c(3,3,1,1), mgp=c(1.6,.6,0))
w = seq(0, .5, by=.01)
FRdiff = abs(1-exp(2i*pi*w))^2
plot(w, FRdiff, type='l', xlab='frequency', panel.first=grid())
u = cos(2*pi*w)+cos(4*pi*w)+cos(6*pi*w)+cos(8*pi*w)+cos(10*pi*w)
FRma = ((1 + cos(12*pi*w) + 2*u)/12)^2
plot(w, FRma, type='l', xlab='frequency', panel.first=grid())

4.8 Multiple Series and Cross-Spectra

The notion of analyzing frequency fluctuations using classical statistical ideas
extends to the case in which there are several jointly stationary series, for
example, xt and yt. In this case, we can introduce the idea of a correlation
indexed by frequency, called the coherence. The autocovariance function
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γxy(h) = E[(xt+h − µx)(yt − µy)]

has a spectral representation given by

γxy(h) =
∫ 1/2

−1/2
fxy(ω)e2πiωh dω h = 0,±1,±2, ..., (4.62)

where the cross-spectrum is defined as the Fourier transform

fxy(ω) =
∞

∑
h=−∞

γxy(h) e−2πiωh − 1/2 ≤ ω ≤ 1/2, (4.63)

assuming that the cross-covariance function is absolutely summable, as was the
case for the autocovariance. The cross-spectrum is generally a complex-valued
function, and it is often written as5

fxy(ω) = cxy(ω)− iqxy(ω), (4.64)

where

cxy(ω) =
∞

∑
h=−∞

γxy(h) cos(2πωh) (4.65)

and

qxy(ω) =
∞

∑
h=−∞

γxy(h) sin(2πωh) (4.66)

are defined as the cospectrum and quadspectrum, respectively. Because of the
relationship γyx(h) = γxy(−h), it follows, by substituting into (4.63) and
rearranging, that

fyx(ω) = fxy(ω). (4.67)

This result, in turn, implies that the cospectrum and quadspectrum satisfy

cyx(ω) = cxy(ω) (4.68)

and
qyx(ω) = −qxy(ω). (4.69)

An important example of the application of the cross-spectrum is to the
problem of predicting an output series yt from some input series xt through a
linear filter relation such as the three-point moving average considered below. A
measure of the strength of such a relation is the squared coherence function,
defined as

ρ2
y·x(ω) =

| fyx(ω)|2

fxx(ω) fyy(ω)
, (4.70)

where fxx(ω) and fyy(ω) are the individual spectra of the xt and yt series,
respectively. Although we consider a more general form of this that applies to
multiple inputs later, it is instructive to display the single input case as (4.70) to
emphasize the analogy with conventional squared correlation, which takes the
form

5 For this section, it will be useful to recall the facts e−iα = cos(α)− i sin(α) and if z = a + ib,
then z = a− ib.
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ρ2
yx =

σ2
yx

σ2
x σ2

y
,

for random variables with variances σ2
x and σ2

y and covariance σyx = σxy. This
motivates the interpretation of squared coherence and the squared correlation
between two time series at frequency ω.

Example 4.14 Three-Point Moving Average
As a simple example, we compute the cross-spectrum between xt and the
three-point moving average yt = (xt−1 + xt + xt+1)/3, where xt is a
stationary input process with spectral density fxx(ω). First,

γxy(h) = cov(xt+h, yt) =
1
3 cov(xt+h, xt−1 + xt + xt+1)

=
1
3
(
γxx(h + 1) + γxx(h) + γxx(h− 1)

)
=

1
3

∫ 1/2

−1/2

(
e2πiω + 1 + e−2πiω

)
e2πiωh fxx(ω) dω

=
1
3

∫ 1/2

−1/2
[1 + 2 cos(2πω)] fxx(ω)e2πiωh dω,

where we have use (4.13). Using the uniqueness of the Fourier transform, we
argue from the spectral representation (4.62) that

fxy(ω) = 1
3 [1 + 2 cos(2πω)] fxx(ω)

so that the cross-spectrum is real in this case. From Example 4.5, the spectral
density of yt is

fyy(ω) = 1
9 [3 + 4 cos(2πω) + 2 cos(4πω)] fxx(ω)

= 1
9 [1 + 2 cos(2πω)]2 fxx(ω),

using the identity cos(2α) = 2 cos2(α)− 1 in the last step. Substituting into
(4.70) yields the squared coherence between xt and yt as unity over all
frequencies. This is a characteristic inherited by more general linear filters.
However, if some noise is added to the three-point moving average, the
coherence is not unity; these kinds of models will be considered in detail later.

Property 4.6 Spectral Representation of a Vector Process
If the elements of the p× p autocovariance function matrix

Γ(h) = E[(xt+h − µ)(xt − µ)′]

of a p-dimensional stationary time series, xt = (xt1, xt2, . . . , xtp)′, has elements
satisfying

∞

∑
h=−∞

|γjk(h)| < ∞ (4.71)

for all j, k = 1, . . . , p, then Γ(h) has the representation

Γ(h) =
∫ 1/2

−1/2
e2πiωh f (ω) dω h = 0,±1,±2, ..., (4.72)
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as the inverse transform of the spectral density matrix, f (ω) = { f jk(ω)}, for
j, k = 1, . . . , p, with elements equal to the cross-spectral components. The matrix
f (ω) has the representation

f (ω) =
∞

∑
h=−∞

Γ(h)e−2πiωh − 1/2 ≤ ω ≤ 1/2. (4.73)

Example 4.15 Spectral Matrix of a Bivariate Process
Consider a jointly stationary bivariate process (xt, yt). We arrange the
autocovariances in the matrix

Γ(h) =
(

γxx(h) γxy(h)
γyx(h) γyy(h)

)
.

The spectral matrix would be given by

f (ω) =

(
fxx(ω) fxy(ω)
fyx(ω) fyy(ω)

)
,

where the Fourier transform (4.72) and (4.73) relate the autocovariance and
spectral matrices.

The extension of spectral estimation to vector series is fairly obvious. For the
vector series xt = (xt1, xt2, . . . , xtp)′, we may use the vector of DFTs, say
d(ωj) = (d1(ωj), d2(ωj), . . . , dp(ωj))

′, and estimate the spectral matrix by

f̄ (ω) = L−1
m

∑
k=−m

I(ωj + k/n) (4.74)

where now
I(ωj) = d(ωj) d∗(ωj) (4.75)

is a p× p complex matrix.6
Again, the series may be tapered before the DFT is taken in (4.74) and we can

use weighted estimation,

f̂ (ω) =
m

∑
k=−m

hk I(ωj + k/n) (4.76)

where {hk} are weights as defined in (4.43). The estimate of squared coherence
between two series, yt and xt is

ρ̂2
y·x(ω) =

| f̂yx(ω)|2

f̂xx(ω) f̂yy(ω)
. (4.77)

If the spectral estimates in (4.77) are obtained using equal weights, we will write
ρ̄2

y·x(ω) for the estimate.
Under general conditions, if ρ2

y·x(ω) > 0 then

6 If Z is a complex matrix, then Z∗ = Z′ denotes the conjugate transpose operation. That is, Z∗ is
the result of replacing each element of Z by its complex conjugate and transposing the resulting
matrix.
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Fig. 4.19. Squared coherency between the SOI and Recruitment series; L = 19, n = 453, n′ = 480,
and α = .001. The horizontal line is C.001.

|ρ̂y·x(ω)| ∼ AN
(
|ρy·x(ω)|,

(
1− ρ2

y·x(ω)
)2/2Lh

)
(4.78)

where Lh is defined in (4.45); the details of this result may be found in Brockwell
and Davis (1991, Ch 11). We may use (4.78) to obtain approximate confidence
intervals for the squared coherency ρ2

y·x(ω).
We can test the hypothesis that ρ2

y·x(ω) = 0 if we use ρ̄2
y·x(ω) for the

estimate with L > 1,7 that is,

ρ̄2
y·x(ω) =

| f̄yx(ω)|2

f̄xx(ω) f̄yy(ω)
. (4.79)

In this case, under the null hypothesis, the statistic

F =
ρ̄2

y·x(ω)

(1− ρ̄2
y·x(ω))

(L− 1) (4.80)

has an approximate F-distribution with 2 and 2L− 2 degrees of freedom. When
the series have been extended to length n′, we replace 2L− 2 by d f − 2, where
d f is defined in (4.40). Solving (4.80) for a particular significance level α leads to

Cα =
F2,2L−2(α)

L− 1 + F2,2L−2(α)
(4.81)

as the approximate value that must be exceeded for the original squared
coherence to be able to reject ρ2

y·x(ω) = 0 at an a priori specified frequency.

Example 4.16 Coherence Between SOI and Recruitment
Figure 4.19 shows the squared coherence between the SOI and Recruitment
series over a wider band than was used for the spectrum. In this case, we used
L = 19, d f = 2(19)(453/480) ≈ 36 and F2,d f−2(.001) ≈ 8.53 at the
significance level α = .001. Hence, we may reject the hypothesis of no
coherence for values of ρ̄2

y·x(ω) that exceed C.001 = .32. We emphasize that
this method is crude because, in addition to the fact that the F-statistic is

7 If L = 1 then ρ̄2
y·x(ω) ≡ 1.



Problems 143

approximate, we are examining the squared coherence across all frequencies
with the Bonferroni inequality in mind. Figure 4.19 also exhibits confidence
bands as part of the R plotting routine. We emphasize that these bands are only
valid for ω where ρ2

y·x(ω) > 0.
In this case, the seasonal frequency and the El Niño frequencies ranging

between about 3 and 7 year periods are strongly coherent. Other frequencies are
also strongly coherent, although the strong coherence is less impressive because
the underlying power spectrum at these higher frequencies is fairly small.
Finally, we note that the coherence is persistent at the seasonal harmonic
frequencies.

This example may be reproduced using the following R commands.
sr = mvspec(cbind(soi,rec), kernel('daniell',9), plot=FALSE)
(sr$df)
[1] 35.8625
(f = qf(.999, 2, sr$df-2) )
[1] 8.529792
(C = f/(18+f) )
[1] 0.3215175
plot(sr, plot.type = "coh", ci.lty = 2)
abline(h = C)

Problems

4.1 Repeat the simulations and analyses in Example 4.1 and Example 4.2 with the
following changes:

(a) Change the sample size to n = 128 and generate and plot the same series as
in Example 4.1:

xt1 = 2 cos(2π .06 t) + 3 sin(2π .06 t),

xt2 = 4 cos(2π .10 t) + 5 sin(2π .10 t),

xt3 = 6 cos(2π .40 t) + 7 sin(2π .40 t),

xt = xt1 + xt2 + xt3.

What is the major difference between these series and the series generated in
Example 4.1? (Hint: The answer is fundamental. But if your answer is the
series are longer, you may be punished severely.)

(b) As in Example 4.2, compute and plot the periodogram of the series, xt,
generated in (a) and comment.

(c) Repeat the analyses of (a) and (b) but with n = 100 (as in Example 4.1), and
adding noise to xt; that is

xt = xt1 + xt2 + xt3 + wt

where wt ∼ iid N(0, σw = 5). That is, you should simulate and plot the data,
and then plot the periodogram of xt and comment.

4.2 Verify (4.5).
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4.3 Consider an MA(1) process

xt = wt + θwt−1,

where θ is a parameter.

(a) Derive a formula for the power spectrum of xt, expressed in terms of θ and ω.
(b) Use arma.spec() to plot the spectral density of xt for θ > 0 and for θ < 0

(just select arbitrary values).
(c) How should we interpret the spectra exhibited in part (b)?

4.4 Consider a first-order autoregressive model

xt = φxt−1 + wt,

where φ, for |φ| < 1, is a parameter and the wt are independent random variables
with mean zero and variance σ2

w.

(a) Show that the power spectrum of xt is given by

fx(ω) =
σ2

w
1 + φ2 − 2φ cos(2πω)

.

(b) Verify the autocovariance function of this process is

γx(h) =
σ2

w φ|h|

1− φ2 ,

h = 0,±1,±2, . . ., by showing that the inverse transform of γx(h) is the
spectrum derived in part (a).

4.5 In applications, we will often observe series containing a signal that has been
delayed by some unknown time D, i.e.,

xt = st + Ast−D + nt,

where st and nt are stationary and independent with zero means and spectral
densities fs(ω) and fn(ω), respectively. The delayed signal is multiplied by some
unknown constant A. Find the autocovariance function of xt and use it to show

fx(ω) = [1 + A2 + 2A cos(2πωD)] fs(ω) + fn(ω).

4.6 Figure 4.20 shows the biyearly smoothed (12-month moving average) number
of sunspots from June 1749 to December 1978 with n = 459 points that were
taken twice per year; the data are contained in sunspotz. With Example 4.7 as a
guide, perform a periodogram analysis identifying the predominant periods and
obtaining confidence intervals for the identified periods. Interpret your findings.

4.7 The levels of salt concentration known to have occurred over rows,
corresponding to the average temperature levels for the soil science are in salt
and saltemp. Plot the series and then identify the dominant frequencies by
performing separate spectral analyses on the two series. Include confidence
intervals for the dominant frequencies and interpret your findings.



Problems 145

Time

su
ns

po
tz

1750 1800 1850 1900 1950

0
50

10
0

15
0

20
0

Fig. 4.20. Smoothed 12-month sunspot numbers (sunspotz) sampled twice per year.

4.8 Let the observed series xt be composed of a periodic signal and noise so it
can be written as

xt = β1 cos(2πωkt) + β2 sin(2πωkt) + wt,

where wt is a white noise process with variance σ2
w. The frequency ωk 6= 0, 1

2 is
assumed to be known and of the form k/n. Given data x1, . . . , xn, suppose we
consider estimating β1, β2 and σ2

w by least squares.

(a) Use simple regression formulas to show that for a fixed ωk, the least squares
regression coefficients are

β̂1 = 2n−1/2dc(ωk) and β̂2 = 2n−1/2ds(ωk),

where the cosine and sine transforms (4.21) and (4.22) appear on the
right-hand side. Hint: See Problem 4.22.

(b) Prove that the error sum of squares can be written as

SSE =
n

∑
t=1

x2
t − 2Ix(ωk)

so that the value of ωk that minimizes squared error is the same as the value
that maximizes the periodogram Ix(ωk) estimator (4.19).

(c) Show that the sum of squares for the regression is given by

SSR = 2Ix(ωk).

(d) Under the Gaussian assumption and fixed ωk, show that the F-test of no
regression leads to an F-statistic that is a monotone function of Ix(ωk).

4.9 Analyze the chicken price data (chicken) using a nonparametric spectral
estimation procedure. Aside from the obvious annual cycle discovered in
Example 2.5, what other interesting cycles are revealed?

4.10 Repeat Problem 4.6 using a nonparametric spectral estimation procedure. In
addition to discussing your findings in detail, comment on your choice of a
spectral estimate with regard to smoothing and tapering.
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4.11 Repeat Problem 4.7 using a nonparametric spectral estimation procedure. In
addition to discussing your findings in detail, comment on your choice of a
spectral estimate with regard to smoothing and tapering.

4.12 Often, the periodicities in the sunspot series are investigated by fitting an
autoregressive spectrum of sufficiently high order. The main periodicity is often
stated to be in the neighborhood of 11 years. Fit an autoregressive spectral
estimator to the sunspot data using a model selection method of your choice.
Compare the result with a conventional nonparametric spectral estimator found in
Problem 4.6.

4.13 Analyze the chicken price data (chicken) using a parametric spectral
estimation procedure. Compare the results to Problem 4.9.

4.14 Fit an autoregressive spectral estimator to the Recruitment series and
compare it to the results of Example 4.10.

4.15 The periodic behavior of a time series induced by echoes can also be
observed in the spectrum of the series; this fact can be seen from the results
stated in Problem 4.5(a). Using the notation of that problem, suppose we observe
xt = st + Ast−D + nt, which implies the spectra satisfy
fx(ω) = [1 + A2 + 2A cos(2πωD)] fs(ω) + fn(ω). If the noise is negligible
( fn(ω) ≈ 0) then log fx(ω) is approximately the sum of a periodic component,
log[1 + A2 + 2A cos(2πωD)], and log fs(ω). Bogart et al. (1962) proposed
treating the detrended log spectrum as a pseudo time series and calculating its
spectrum, or cepstrum, which should show a peak at a quefrency corresponding
to 1/D. The cepstrum can be plotted as a function of quefrency, from which the
delaty D can be estimated.

For the speech series presented in speech, estimate the pitch period using
cepstral analysis as follows.

(a) Calculate and display the log-periodogram of the data. Is the periodogram
periodic, as predicted?

(b) Perform a cepstral (spectral) analysis on the detrended logged periodogram,
and use the results to estimate the delay D.

4.16 Consider two time series

xt = wt − wt−1,

yt =
1
2 (wt + wt−1),

formed from the white noise series wt with variance σ2
w = 1.

(a) Are xt and yt jointly stationary? Recall the cross-covariance function must
also be a function only of the lag h and cannot depend on time.

(b) Compute the spectra fy(ω) and fx(ω), and comment on the difference
between the two results.

(c) Suppose sample spectral estimators f̄y(.10) are computed for the series using
L = 3. Find a and b such that

P
{

a ≤ f̄y(.10) ≤ b
}

= .90.
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This expression gives two points that will contain 90% of the sample spectral
values. Put 5% of the area in each tail.

4.17 Analyze the coherency between the temperature and salt data discussed in
Problem 4.7. Discuss your findings.

4.18 Consider two processes

xt = wt and yt = φxt−D + vt

where wt and vt are independent white noise processes with common variance
σ2, φ is a constant, and D is a fixed integer delay.

(a) Compute the coherency between xt and yt.
(b) Simulate n = 1024 normal observations from xt and yt for φ = .9, σ2 = 1,

and D = 0. Then estimate and plot the coherency between the simulated
series for the following values of L and comment:
(i) L = 1, (ii) L = 3, (iii) L = 41, and (iv) L = 101.

4.19 For the processes in Problem 4.18:

(a) Compute the phase between xt and yt.
(b) Simulate n = 1024 observations from xt and yt for φ = .9, σ2 = 1, and

D = 1. Then estimate and plot the phase between the simulated series for the
following values of L and comment:
(i) L = 1, (ii) L = 3, (iii) L = 41, and (iv) L = 101.

4.20 Consider the bivariate time series records containing monthly U.S.
production as measured by the Federal Reserve Board Production Index (prodn)
and monthly unemployment (unemp) that are included with astsa.

(a) Compute the spectrum and the log spectrum for each series, and identify
statistically significant peaks. Explain what might be generating the peaks.
Compute the coherence, and explain what is meant when a high coherence is
observed at a particular frequency.

(b) What would be the effect of applying the filter

ut = xt − xt−1 followed by vt = ut − ut−12

to the series given above? Plot the predicted frequency responses of the
simple difference filter and of the seasonal difference of the first difference.

(c) Apply the filters successively to one of the two series and plot the output.
Examine the output after taking a first difference and comment on whether
stationarity is a reasonable assumption. Why or why not? Plot after taking the
seasonal difference of the first difference. What can be noticed about the
output that is consistent with what you have predicted from the frequency
response? Verify by computing the spectrum of the output after filtering.

4.21 Let xt = cos(2πωt), and consider the output yt = ∑∞
k=−∞ akxt−k, where

∑k |ak| < ∞. Show yt = |A(ω)| cos(2πωt + φ(ω)), where |A(ω)| and φ(ω)
are the amplitude and phase of the filter, respectively. Interpret the result in terms
of the relationship between the input series, xt, and the output series, yt.



148 4 Spectral Analysis and Filtering

4.22 * This is here for useful information. Verify that for any positive integer n
and j, k = 0, 1, . . . , [[n/2]], where [[·]] denotes the greatest integer function:

(a) Except for j = 0 or j = n/2,

n

∑
t=1

cos2(2πtj/n) =
n

∑
t=1

sin2(2πtj/n) = n/2.

(b) When j = 0 or j = n/2,

n

∑
t=1

cos2(2πtj/n) = n but
n

∑
t=1

sin2(2πtj/n) = 0.

(c) For j 6= k,

n

∑
t=1

cos(2πtj/n) cos(2πtk/n) =
n

∑
t=1

sin(2πtj/n) sin(2πtk/n) = 0.

(d) Also, for any j and k,

n

∑
t=1

cos(2πtj/n) sin(2πtk/n) = 0.

* Note, ∑n
t=1 zt = z 1−zn

1−z for z 6= 1, and we’ll do (a):
∑n

t=1 cos2(2πt j/n) = 1
4 ∑n

t=1
(
e2πit j/n + e−2πit j/n)(e2πit j/n + e−2πit j/n)

= 1
4 ∑n

t=1
(
e4πit j/n + 1 + 1 + e−4πit j/n) = n

2 .



Chapter 5
Some Additional Topics **

In this chapter, we present special or advanced topics in the time domain. This
chapter consists of sections of independent topics that may be read in any order.
The sections depend on a basic knowledge of ARMA models, forecasting and
estimation, which is the material covered in Chapter 3.

5.1 GARCH Models

Various problems such as option pricing in finance have motivated the study of
the volatility, or variability, of a time series. ARMA models were used to model
the conditional mean of a process when the conditional variance was constant.
Using an AR(1) as an example, we assumed

E(xt | xt−1, xt−2, . . . ) = φxt−1

var(xt | xt−1, xt−2, . . . ) = var(wt) = σ2
w .

In many problems, however, the assumption of a constant conditional variance
will be violated. Models such as the autoregressive conditionally heteroscedastic
or ARCH model, first introduced by Engle (1982), were developed to model
changes in volatility. These models were later extended to generalized ARCH, or
GARCH models by Bollerslev (1986).

In these problems, we are concerned with modeling the return or growth rate
of a series. For example, if xt is the value of an asset at time t, then the return or
relative gain, rt, of the asset at time t is

rt =
xt − xt−1

xt−1
. (5.1)

Definition (5.1) implies that xt = (1 + rt)xt−1. Thus, based on the discussion in
Section 3.8, if the return represents a small (in magnitude) percentage change then

∇ log(xt) ≈ rt. (5.2)
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Either value, ∇ log(xt) or (xt − xt−1)/xt−1, will be called the return,1 and will
be denoted by rt.

Typically, for financial series, the return rt, does not have a constant
conditional variance, and highly volatile periods tend to be clustered together. In
other words, there is a strong dependence of sudden bursts of variability in a
return on the series own past. For example, Figure 1.4 shows the daily returns of
the Dow Jones Industrial Average (DJIA) from April 20, 2006 to April 20, 2016.
In this case, as is typical, the return rt is fairly stable, except for short-term bursts
of high volatility.

The simplest ARCH model, the ARCH(1), models the return as

rt = σtεt (5.3)

σ2
t = α0 + α1r2

t−1, (5.4)

where εt is standard Gaussian white noise, εt ∼ iid N(0, 1). The normal
assumption may be relaxed; we will discuss this later. As with ARMA models,
we must impose some constraints on the model parameters to obtain desirable
properties. An obvious constraint is that α0, α1 ≥ 0 because σ2

t is a variance.
As we shall see, the ARCH(1) models return as a white noise process with

nonconstant conditional variance, and that conditional variance depends on the
previous return. First, notice that the conditional distribution of rt given rt−1 is
Gaussian:

rt
∣∣ rt−1 ∼ N(0, α0 + α1r2

t−1). (5.5)

In addition, it is possible to write the ARCH(1) model as a non-Gaussian AR(1)
model in the square of the returns r2

t . First, rewrite (5.3)–(5.4) as

r2
t = σ2

t ε2
t

α0 + α1r2
t−1 = σ2

t ,

and subtract the two equations to obtain

r2
t − (α0 + α1r2

t−1) = σ2
t ε2

t − σ2
t .

Now, write this equation as

r2
t = α0 + α1r2

t−1 + vt, (5.6)

where vt = σ2
t (ε

2
t − 1). Because ε2

t is the square of a N(0, 1) random variable,
ε2

t − 1 is a shifted (to have mean-zero), χ2
1 random variable.

To explore the properties of ARCH, we defineRs = {rs, rs−1, . . . }. Then,
using (5.5), we immediately see that rt has a zero mean:

E(rt) = EE(rt
∣∣ Rt−1) = EE(rt

∣∣ rt−1) = 0. (5.7)

Because E(rt | Rt−1) = 0, the process rt is said to be a martingale difference.
Because rt is a martingale difference, it is also an uncorrelated sequence. For

example, with h > 0,
1 Recall that if rt = (xt − xt−1)/xt−1 is a small percentage, then log(1 + rt) ≈ rt. It is easier to
program∇ log xt, so this is often used instead of calculating rt directly. Although it is a misnomer,
∇ log xt is often called the log-return; but the returns are not being logged.
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cov(rt+h, rt) = E(rtrt+h) = EE(rtrt+h | Rt+h−1)

= E {rtE(rt+h | Rt+h−1)} = 0. (5.8)

The last line of (5.8) follows because rt belongs to the information setRt+h−1
for h > 0, and, E(rt+h | Rt+h−1) = 0, as determined in (5.7).

An argument similar to (5.7) and (5.8) will establish the fact that the error
process vt in (5.6) is also a martingale difference and, consequently, an
uncorrelated sequence. If the variance of vt is finite and constant with respect to
time, and 0 ≤ α1 < 1, then based on Property 3.1, (5.6) specifies a causal AR(1)
process for r2

t . Therefore, E(r2
t ) and var(r

2
t ) must be constant with respect to time

t. This, implies that
E(r2

t ) = var(rt) =
α0

1− α1
(5.9)

and, after some manipulations,

E(r4
t ) =

3α2
0

(1− α1)2
1− α2

1
1− 3α2

1
, (5.10)

provided 3α2
1 < 1. Note that

var(r2
t ) = E(r4

t )− [E(r2
t )]

2 .

These results imply that the kurtosis, κ, of rt is

κ =
E(r4

t )

[E(r2
t )]

2
= 3

1− α2
1

1− 3α2
1

, (5.11)

which is never smaller than 3, the kurtosis of the normal distribution. Thus, the
marginal distribution of the returns, rt, is leptokurtic, or has “fat tails.” Thus, if
0 ≤ α1 < 1, the process rt itself is white noise and its unconditional distribution
is symmetrically distributed around zero; this distribution is leptokurtic. If, in
addition, 3α2

1 < 1, the square of the process, r2
t , follows a causal AR(1) model

with ACF given by ρy2(h) = αh
1 ≥ 0, for all h > 0. If 3α1 ≥ 1, but α1 < 1, it

can be shown that r2
t is strictly stationary with infinite variance (see Douc, et al.,

2014).
Estimation of the parameters α0 and α1 of the ARCH(1) model is typically

accomplished by conditional MLE. The conditional likelihood of the data
r2, ...., rn given r1, is given by

L(α0, α1
∣∣ r1) =

n

∏
t=2

fα0,α1(rt
∣∣ rt−1), (5.12)

where the density fα0,α1(rt
∣∣ rt−1) is the normal density specified in (5.5). Hence,

the criterion function to be minimized, l(α0, α1) ∝ − ln L(α0, α1
∣∣ r1) is given by

l(α0, α1) =
1
2

n

∑
t=2

ln(α0 + α1r2
t−1) +

1
2

n

∑
t=2

(
r2

t
α0 + α1r2

t−1

)
. (5.13)

Estimation is accomplished by numerical methods, as described in Section 3.4.
The likelihood of the ARCH model tends to be flat unless n is very large. A
discussion of this problem can be found in Shephard (1996).
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Fig. 5.1. ACF and PACF of the squares of the residuals from the AR(1) fit on U.S. GNP.

It is also possible to combine a regression or an ARMA model for the mean
with an ARCH model for the errors. For example, a regression with ARCH(1)
errors model would have the observations xt as linear function of p regressors,
zt = (zt1, ..., ztp)′, and ARCH(1) noise yt, say,

xt = β′zt + yt,

where yt satisfies (5.3)–(5.4), but, in this case, is unobserved. Similarly, for
example, an AR(1) model for data xt exhibiting ARCH(1) errors would be

xt = φ0 + φ1xt−1 + yt.

These types of models were explored by Weiss (1984).

Example 5.1 Analysis of U.S. GNP
In Example 3.27, we fit an MA(2) model and an AR(1) model to the U.S. GNP
series and we concluded that the residuals from both fits appeared to behave
like a white noise process. In Example 3.31 we concluded that the AR(1) is
probably the better model in this case. It has been suggested that the U.S. GNP
series has ARCH errors, and in this example, we will investigate this claim. If
the GNP noise term is ARCH, the squares of the residuals from the fit should
behave like a non-Gaussian AR(1) process, as pointed out in (5.6). Figure 5.1
shows the ACF and PACF of the squared residuals it appears that there may be
some dependence, albeit small, left in the residuals. The figure was generated in
R as follows.
u = sarima(diff(log(gnp)), 1, 0, 0)
acf2(resid(u$fit)^2, 20)

We used the R package fGarch to fit an AR(1)-ARCH(1) model to the
U.S. GNP returns with the following results. A partial output is shown; we note
that garch(1,0) specifies an ARCH(1) in the code below (details later).
library(fGarch)
summary(garchFit(~arma(1,0)+garch(1,0), diff(log(gnp))))

Estimate Std.Error t.value p.value
mu 0.005 0.001 5.867 0.000
ar1 0.367 0.075 4.878 0.000
omega 0.000 0.000 8.135 0.000
alpha1 0.194 0.096 2.035 0.042
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Standardised Residuals Tests: Statistic p-Value
Jarque-Bera Test R Chi^2 9.118 0.010
Shapiro-Wilk Test R W 0.984 0.014
Ljung-Box Test R Q(20) 23.414 0.269
Ljung-Box Test R^2 Q(20) 37.743 0.010

Note that the given p-values are two-sided, so they should be halved when
considering the ARCH parameters. In this example, we obtain φ̂0 = .005
(called mu in the output) and φ̂1 = .367 (called ar1) for the AR(1) parameter
estimates; in Example 3.27 the values were .005 and .347, respectively. The
ARCH(1) parameter estimates are α̂0 = 0 (called omega) for the constant and
α̂1 = .194, which is significant with a p-value of about .02. There are a number
of tests that are performed on the residuals [R] or the squared residuals [R^2].
For example, the Jarque–Bera statistic tests the residuals of the fit for normality
based on the observed skewness and kurtosis, and it appears that the residuals
have some non-normal skewness and kurtosis. The Shapiro–Wilk statistic tests
the residuals of the fit for normality based on the empirical order statistics. The
other tests, primarily based on the Q-statistic, are used on the residuals and their
squares.

The ARCH(1) model can be extended to the general ARCH(p) model in an
obvious way. That is, (5.3), rt = σtεt, is retained, but (5.4) is extended to

σ2
t = α0 + α1r2

t−1 + · · ·+ αpr2
t−p. (5.14)

Estimation for ARCH(p) also follows in an obvious way from the discussion of
estimation for ARCH(1) models. That is, the conditional likelihood of the data
rp+1, . . . , rn given r1, . . . , rp, is given by

L(α
∣∣ r1, . . . , rp) =

n

∏
t=p+1

fα(rt
∣∣ rt−1, . . . , rt−p), (5.15)

where α = (α0, α1, . . . , αp) and, under the assumption of normality, the
conditional densities fα(·|·) in (5.15) are, for t > p, given by

rt
∣∣ rt−1, . . . , rt−p ∼ N(0, α0 + α1r2

t−1 + · · ·+ αpr2
t−p).

Another extension of ARCH is the generalized ARCH or GARCH model
developed by Bollerslev (1986). For example, a GARCH(1, 1) model retains
(5.3), rt = σtεt, but extends (5.4) as follows:

σ2
t = α0 + α1r2

t−1 + β1σ2
t−1. (5.16)

Under the condition that α1 + β1 < 1, using similar manipulations as in (5.6), the
GARCH(1, 1) model, (5.3) and (5.16), admits a non-Gaussian ARMA(1, 1)
model for the squared process

r2
t = α0 + (α1 + β1)r2

t−1 + vt − β1vt−1, (5.17)

where vt is as defined in (5.6). Representation (5.17) follows by writing (5.3) as

r2
t − σ2

t = σ2
t (ε

2
t − 1)

β1(r2
t−1 − σ2

t−1) = β1σ2
t−1(ε

2
t−1 − 1),
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subtracting the second equation from the first, and using the fact that, from
(5.16), σ2

t − β1σ2
t−1 = α0 + α1r2

t−1, on the left-hand side of the result. The
GARCH(p, q) model retains (5.3) and extends (5.16) to

σ2
t = α0 +

p

∑
j=1

αjr2
t−j +

q

∑
j=1

β jσ
2
t−j. (5.18)

Conditional maximum likelihood estimation of the GARCH(m, r) model
parameters is similar to the ARCH(m) case, wherein the conditional likelihood,
(5.15), is the product of N(0, σ2

t ) densities with σ2
t given by (5.18) and where the

conditioning is on the first max(m, r) observations, with σ2
1 = · · · = σ2

r = 0.
Once the parameter estimates are obtained, the model can be used to obtain
one-step-ahead forecasts of the volatility, say σ̂2

t+1, given by

σ̂2
t+1 = α̂0 +

p

∑
j=1

α̂jr2
t+1−j +

q

∑
j=1

β̂ jσ̂
2
t+1−j. (5.19)

We explore these concepts in the following example.

Example 5.2 GARCH Analysis of the DJIA Returns
As previously mentioned, the daily returns of the DJIA shown in Figure 1.4
exhibit classic GARCH features. In addition, there is some low level
autocorrelation in the series itself, and to include this behavior, we used the R
fGarch package to fit an AR(1)-GARCH(1, 1) model to the series using t
errors:
library(xts)
djiar = diff(log(djia$Close))[-1]
acf2(djiar) # exhibits some autocorrelation (not shown)
acf2(djiar^2) # oozes autocorrelation (not shown)
library(fGarch)
summary(djia.g <- garchFit(~arma(1,0)+garch(1,1), data=djiar,

cond.dist='std'))
plot(djia.g) # to see all plot options

Estimate Std.Error t.value p.value
mu 8.585e-04 1.470e-04 5.842 5.16e-09
ar1 -5.531e-02 2.023e-02 -2.735 0.006239
omega 1.610e-06 4.459e-07 3.611 0.000305
alpha1 1.244e-01 1.660e-02 7.497 6.55e-14
beta1 8.700e-01 1.526e-02 57.022 < 2e-16
shape 5.979e+00 7.917e-01 7.552 4.31e-14
---
Standardised Residuals Tests:

Statistic p-Value
Ljung-Box Test R Q(10) 16.81507 0.0785575
Ljung-Box Test R^2 Q(10) 15.39137 0.1184312

To explore the GARCH predictions of volatility, we calculated and plotted part
of the data surrounding the financial crises of 2008 along with the
one-step-ahead predictions of the corresponding volatility, σ2

t as a solid line in
Figure 5.2.

Another model that we mention briefly is the asymmetric power ARCHmodel.
The model retains (5.3), rt = σtεt, but the conditional variance is modeled as

σδ
t = α0 +

p

∑
j=1

αj(|rt−j| − γjrt−j)
δ +

q

∑
j=1

β jσ
δ
t−j . (5.20)
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Fig. 5.2. GARCH one-step-ahead predictions of the DJIA volatility, σt, superimposed on part of the
data including the financial crisis of 2008.

Note that the model is GARCH when δ = 2 and γj = 0, for j ∈ {1, . . . , p}. The
parameters γj (|γj| ≤ 1) are the leverage parameters, which are a measure of
asymmetry, and δ > 0 is the parameter for the power term. A positive [negative]
value of γj’s means that past negative [positive] shocks have a deeper impact on
current conditional volatility than past positive [negative] shocks. This model
couples the flexibility of a varying exponent with the asymmetry coefficient to
take the leverage effect into account. Further, to guarantee that σt > 0, we assume
that α0 > 0, αj ≥ 0 with at least one αj > 0, and β j ≥ 0.

We contiune the analysis of the DJIA returns in the following example.

Example 5.3 APARCH Analysis of the DJIA Returns
The R package fGarch was used to fit an AR-APARCH model to the DJIA
returns discussed in Example 5.2. As in the previous example, we include an
AR(1) in the model to account for the conditional mean. In this case, we may
think of the model as rt = µt + yt where µt is an AR(1), and yt is APARCH
noise with conditional variance modeled as (5.20) with t-errors. A partial
output of the analysis is given below. We do not include displays, but we show
how to obtain them. The predicted volatility is, of course, different than the
values shown in Figure 5.2, but appear similar when graphed.
lapply( c('xts', 'fGarch'), library, char=TRUE) # load 2 packages
summary(fit <- garchFit(~arma(1,0)+aparch(1,1), data=djiar,

cond.dist='std'))
plot(djia.ap) # to see all plot options (none shown)

Estimate Std. Error t value p.value
mu 5.234e-04 1.525e-04 3.432 0.000598
ar1 -4.818e-02 1.934e-02 -2.491 0.012727
omega 1.798e-04 3.443e-05 5.222 1.77e-07
alpha1 9.809e-02 1.030e-02 9.525 < 2e-16
gamma1 1.000e+00 1.045e-02 95.731 < 2e-16
beta1 8.945e-01 1.049e-02 85.280 < 2e-16
delta 1.070e+00 1.350e-01 7.928 2.22e-15
shape 7.286e+00 1.123e+00 6.489 8.61e-11
---
Standardised Residuals Tests:

Statistic p-Value
Ljung-Box Test R Q(10) 15.71403 0.108116
Ljung-Box Test R^2 Q(10) 16.87473 0.077182
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In most applications, the distribution of the noise, εt in (5.3), is rarely normal.
The R package fGarch allows for various distributions to be fit to the data; see the
help file for information. Some drawbacks of GARCH and related models are as
follows. (i) The GARCH model assumes positive and negative returns have the
same effect because volatility depends on squared returns; the asymmetric models
help alleviate this problem. (ii) These models are often restrictive because of the
tight constraints on the model parameters (e.g., for an ARCH(1), 0 ≤ α2

1 < 1
3 ).

(iii) The likelihood is flat unless n is very large. (iv) The models tend to
overpredict volatility because they respond slowly to large isolated returns.

Various extensions to the original model have been proposed to overcome
some of the shortcomings we have just mentioned. For example, we have already
discussed the fact that fGarch allows for asymmetric return dynamics. In the case
of persistence in volatility, the integrated GARCH (IGARCH) model may be
used. Recall (5.17) where we showed the GARCH(1, 1) model can be written as

r2
t = α0 + (α1 + β1)r2

t−1 + vt − β1vt−1

and r2
t is stationary if α1 + β1 < 1. The IGARCH model sets α1 + β1 = 1, in

which case the IGARCH(1, 1) model is

rt = σtεt and σ2
t = α0 + (1− β1)r2

t−1 + β1σ2
t−1.

There are many different extensions to the basic ARCH model that were
developed to handle the various situations noticed in practice. Interested readers
might find the general discussions in Engle et al. (1994) and Shephard (1996)
worthwhile reading. Also, Gouriéroux (1997) gives a detailed presentation of
ARCH and related models with financial applications and contains an extensive
bibliography. Two excellent texts on financial time series analysis are
Chan (2002) and Tsay (2002).

5.2 Unit Root Testing

The use of the first difference ∇xt = (1− B)xt can be too severe a modification
in the sense that the nonstationary model might represent an overdifferencing of
the original process.

Consider a causal AR(1) process (we assume throughout this section that the
noise is Gaussian),

xt = φxt−1 + wt. (5.21)

A unit root test provides a way to test whether (5.21) is a random walk (the null
case) as opposed to a causal process (the alternative). That is, it provides a
procedure for testing

H0 : φ = 1 versus H1 : |φ| < 1.

To see if it is reasonable to assume φ− 1 = 0, an obvious test statistic would be
to consider (φ̂− 1), appropriately normalized, in the hope to develop an
asymptotically normal test statistic, where φ̂ is one of the optimal estimators
discussed in Section 3.4. Note that the distribution in Example 3.21 does not
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work in this case; if it did, under the null hypothesis, φ̂
·∼ N(1, 0), which is

nonsense. The theory of Section 3.4 does not work in the null case because the
process is not stationary.

However, the test statistic

U = n(φ̂− 1)

can be used, and it is known as the unit root or Dickey-Fuller (DF) statistic,
although the actual DF test statistic is normalized a little differently. In this case,
the distribution of the test statistic does not have a closed form and quantiles of
the distribution must be computed by numerical approximation or by simulation.
The R package tseries provides this test along with more general tests that we
mention briefly.

Toward a more general model, we note that the DF test was established by
noting that if xt = φxt−1 + wt, then ∇xt = (φ− 1)xt−1 + wt = γxt−1 + wt,
and one could test H0 : γ = 0 by regressing ∇xt on xt−1. They formed a Wald
statistic and derived its limiting distribution. The test was extended to
accommodate AR(p) models, xt = ∑

p
j=1 φjxt−j + wt, as follows. Subtract xt−1

from the model to obtain

∇xt = γxt−1 +
p−1

∑
j=1

ψj∇xt−j + wt, (5.22)

where γ = ∑
p
j=1 φj − 1 and ψj = −∑

p
i=j φi for j = 2, . . . , p. For a quick check

of (5.22) when p = 2, note that xt = (φ1 + φ2)xt−1 − φ2(xt−1 − xt−2) + wt;
now subtract xt−1 from both sides. To test the hypothesis that the process has a
unit root at 1 (i.e., the AR polynoimial φ(z) = 0 when z = 1), we can test
H0 : γ = 0 by estimating γ in the regression of ∇xt on
xt−1,∇xt−1, . . . ,∇xt−p+1, and forming a Wald test based on tγ = γ̂/se(γ̂).
This test leads to the so-called augmented Dickey-Fuller test (ADF). While the
calculations for obtaining the asymptotic null distribution change, the basic ideas
and machinery remain the same as in the simple case. The choice of p is crucial,
and we will discuss some suggestions in the example. For ARMA(p, q) models,
the ADF test can be used by assuming p is large enough to capture the essential
correlation structure; another alternative is the Phillips-Perron (PP) test, which
differs from the ADF tests mainly in how they deal with serial correlation and
heteroskedasticity in the errors.

One can extend the model to include a constant, or even non-stochastic trend.
For example, consider the model

xt = β0 + β1t + φxt−1 + wt.

If we assume β1 = 0, then under the null hypothesis, φ = 1, the process is a
random walk with drift β0. Under the alternate hypothesis, the process is a causal
AR(1) with mean µx = β0(1− φ). If we cannot assume β1 = 0, then the interest
here is testing the null that (β1, φ) = (0, 1), simultaneously, versus the
alternative that β1 6= 0 and |φ| < 1. In this case, the null hypothesis is that the
process is a random walk with drift, versus the alternative hypothesis that the
process is stationary around a global trend (consider the chicken price series
examined in Example 2.1).
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Example 5.4 Testing Unit Roots in the Glacial Varve Series
In this example we use the R package tseries to test the null hypothesis that
the log of the glacial varve series has a unit root, versus the alternate hypothesis
that the process is stationary. We test the null hypothesis using the available DF,
ADF and PP tests; note that in each case, the general regression equation
incorporates a constant and a linear trend. In the ADF test, the default number
of AR components included in the model, say k, is [[(n− 1)

1
3 ]], which

corresponds to the suggested upper bound on the rate at which the number of
lags, k, should be made to grow with the sample size for the general
ARMA(p, q) setup. For the PP test, the default value of k is [[.04n

1
4 ]].

library(tseries)
adf.test(log(varve), k=0) # DF test
Dickey-Fuller = -12.8572, Lag order = 0, p-value < 0.01
alternative hypothesis: stationary

adf.test(log(varve)) # ADF test
Dickey-Fuller = -3.5166, Lag order = 8, p-value = 0.04071
alternative hypothesis: stationary

pp.test(log(varve)) # PP test
Dickey-Fuller Z(alpha) = -304.5376,
Truncation lag parameter = 6, p-value < 0.01
alternative hypothesis: stationary

In each test, we reject the null hypothesis that the logged varve series has a unit
root. The conclusion of these tests supports the conclusion of the previous
section that the logged varve series is long memory rather than integrated.

5.3 Long Memory and Fractional Differencing

The conventional ARMA(p, q) process is often referred to as a short-memory
process because the coefficients in the representation

xt =
∞

∑
j=0

ψjwt−j,

obtained by solving
φ(z)ψ(z) = θ(z),

are dominated by exponential decay. As pointed out in Chapter 3, this result
implies the ACF of the short memory process ρ(h)→ 0 exponentially fast as
h→ ∞. When the sample ACF of a time series decays slowly, the advice given in
Chapter 3 has been to difference the series until it seems stationary. Following
this advice with the glacial varve series first presented in Example 3.20 leads to
the first difference of the logarithms of the data being represented as a first-order
moving average. In Example 3.29, further analysis of the residuals leads to fitting
an ARIMA(1, 1, 1) model,

∇xt = φ∇xt−1 + wt + θwt−1,

where we understand xt is the log-transformed varve series. In particular, the
estimates of the parameters (and the standard errors) were φ̂ = .23(.05),
θ̂ = −.89(.03), and σ̂2

w = .23. The use of the first difference ∇xt = (1− B)xt
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Fig. 5.3. Sample ACF of the log transformed varve series.

can be too severe a modification in the sense that the nonstationary model might
represent an overdifferencing of the original process.

Long memory (or persistent) time series were considered in Hosking (1981)
and Granger and Joyeux (1980) as intermediate compromises between the short
memory ARMA type models and the fully integrated nonstationary processes in
the Box–Jenkins class. The easiest way to generate a long memory series is to
think of using the difference operator (1− B)d for fractional values of d, say,
0 < d < .5, so a basic long memory series gets generated as

(1− B)dxt = wt, (5.23)

where wt still denotes white noise with variance σ2
w. The fractionally differenced

series (5.23), for |d| < .5, is often called fractional noise (except when d is zero).
Now, d becomes a parameter to be estimated along with σ2

w. Differencing the
original process, as in the Box–Jenkins approach, may be thought of as simply
assigning a value of d = 1. This idea has been extended to the class of
fractionally integrated ARMA, or ARFIMA models, where −.5 < d < .5; when
d is negative, the term antipersistent is used. Long memory processes occur in
hydrology (see Hurst, 1951, and McLeod and Hipel, 1978) and in environmental
series, such as the varve data we have previously analyzed, to mention a few
examples. Long memory time series data tend to exhibit sample autocorrelations
that are not necessarily large (as in the case of d = 1), but persist for a long time.
Figure 5.3 shows the sample ACF, to lag 100, of the log-transformed varve series,
which exhibits classic long memory behavior:
acf1(log(varve), 100)

To investigate its properties, we can use the binomial expansion (d > −1) to
write

wt = (1− B)dxt =
∞

∑
j=0

πjBjxt =
∞

∑
j=0

πjxt−j (5.24)

where
πj =

Γ(j− d)
Γ(j + 1)Γ(−d)

(5.25)

with Γ(x + 1) = xΓ(x) being the gamma function. Similarly (d < 1), we can
write

xt = (1− B)−dwt =
∞

∑
j=0

ψjBjwt =
∞

∑
j=0

ψjwt−j (5.26)
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where
ψj =

Γ(j + d)
Γ(j + 1)Γ(d)

. (5.27)

When |d| < .5, the processes (5.24) and (5.26) are well-defined stationary
processes (see Brockwell and Davis, 1991, for details). In the case of fractional
differencing, however, the coefficients satisfy ∑ π2

j < ∞ and ∑ ψ2
j < ∞ as

opposed to the absolute summability of the coefficients in ARMA processes.
Using the representation (5.26)–(5.27), and after some nontrivial

manipulations, it can be shown that the ACF of xt is

ρ(h) =
Γ(h + d)Γ(1− d)
Γ(h− d + 1)Γ(d)

∼ h2d−1 (5.28)

for large h. From this we see that for 0 < d < .5

∞

∑
h=−∞

|ρ(h)| = ∞

and hence the term long memory.
In order to examine a series such as the varve series for a possible long

memory pattern, it is convenient to look at ways of estimating d. Using (5.25) it is
easy to derive the recursions

πj+1(d) =
(j− d)πj(d)

(j + 1)
, (5.29)

for j = 0, 1, . . ., with π0(d) = 1. Maximizing the joint likelihood of the errors
under normality, say, wt(d), will involve minimizing the sum of squared errors

Q(d) = ∑ w2
t (d).

The usual Gauss–Newton method, described in §3.6, leads to the expansion

wt(d) = wt(d0) + w′t(d0)(d− d0),

where
w′t(d0) =

∂wt

∂d

∣∣∣∣
d=d0

and d0 is an initial estimate (guess) at to the value of d. Setting up the usual
regression leads to

d = d0 −
∑t w′t(d0)wt(d0)

∑t w′t(d0)
2 . (5.30)

The derivatives are computed recursively by differentiating (5.29) successively
with respect to d: π′j+1(d) = [(j− d)π′j(d)− πj(d)]/(j + 1), where
π′0(d) = 0. The errors are computed from an approximation to (5.24), namely,

wt(d) =
t

∑
j=0

πj(d)xt−j. (5.31)

It is advisable to omit a number of initial terms from the computation and start the
sum, (5.30), at some fairly large value of t to have a reasonable approximation.
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Fig. 5.4. Coefficients πj(.373), j = 1, 2, . . . , 30 in the representation (5.29).

Example 5.5 Long Memory Fitting of the Glacial Varve Series
We consider analyzing the glacial varve series discussed in Example 2.7 and
Example 3.20. Figure 2.7 shows the original and log-transformed series (which
we denote by xt). In Example 3.29, we noted that xt could be modeled as an
ARIMA(1, 1, 1) process. We fit the fractionally differenced model, (5.23), to
the mean-adjusted series, xt − x̄. Applying the Gauss–Newton iterative
procedure previously described leads to a final value of d = .373, which
implies the set of coefficients πj(.373), as given in Figure 5.4 with
π0(.373) = 1. We can compare roughly the performance of the fractional
difference operator with the ARIMA model by examining the autocorrelation
functions of the two residual series as shown in Figure 5.5. The ACFs of the
two residual series are roughly comparable with the white noise model.

To perform this analysis in R, first download and install the arfima package.
Then use
library(arfima)
summary(varve.fd <- arfima(log(varve), order = c(0,0,0)))
d.hat = 0.3728, se(d,hat) = 0.0273 (summary of the results)

# residual stuff
innov = resid(varve.fd)
tsplot(innov[[1]])
acf1(innov[[1]])

Forecasting long memory processes is similar to forecasting ARIMA models.
That is, (5.24) and (5.29) can be used to obtain the truncated forecasts

x̃n
n+m = −

n

∑
j=1

πj(d̂) x̃n
n+m−j, (5.32)

for m = 1, 2, . . . . Error bounds can be approximated by using

Pn
n+m = σ̂2

w

(
m−1

∑
j=0

ψ2
j (d̂)

)
(5.33)

where, as in (5.29),

ψj(d̂) =
(j + d̂)ψj(d̂)

(j + 1)
, (5.34)

with ψ0(d̂) = 1.
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Fig. 5.5. ACF of residuals from the ARIMA(1, 1, 1) fit to the logged varve series (top) and of the
residuals from the long memory model fit, (1− B)dxt = wt, with d = .373 (bottom).

No obvious short memory ARMA-type component can be seen in the ACF of
the residuals from the fractionally differenced varve series shown in Figure 5.5. It
is natural, however, that cases will exist in which substantial short memory-type
components will also be present in data that exhibits long memory. Hence, it is
natural to define the general ARFIMA(p, d, q), −.5 < d < .5 process as

φ(B)∇d(xt − µ) = θ(B)wt, (5.35)

where φ(B) and θ(B) are as given in Chapter 3. Writing the model in the form

φ(B)πd(B)(xt − µ) = θ(B)wt (5.36)

makes it clear how we go about estimating the parameters for the more general
model. Forecasting for the ARFIMA(p, d, q) series can be easily done, noting
that we may equate coefficients in

φ(z)ψ(z) = (1− z)−dθ(z) (5.37)

and
θ(z)π(z) = (1− z)dφ(z) (5.38)

to obtain the representations

xt = µ +
∞

∑
j=0

ψjwt−j

and

wt =
∞

∑
j=0

πj(xt−j − µ).

We then can proceed as discussed in (5.32) and (5.33).
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Problems

5.1 Weekly crude oil spot prices in dollars per barrel are in oil. Investigate
whether the growth rate of the weekly oil price exhibits GARCH behavior. If so,
fit an appropriate model to the growth rate.

5.2 The stats package of R contains the daily closing prices of four major
European stock indices; type help(EuStockMarkets) for details. Fit a GARCH
model to the returns of one of these series and discuss your findings. (Note: The
data set contains actual values, and not returns. Hence, the data must be
transformed prior to the model fitting.)

5.3 The data set arf is 1000 simulated observations from an ARFIMA(1, 1, 0)
model with φ = .75 and d = .4.

(a) Plot the data and comment.
(b) Plot the ACF and PACF of the data and comment.
(c) Estimate the parameters and test for the significance of the estimates φ̂ and d̂.
(d) Explain why, using the results of parts (a) and (b), it would seem reasonable

to difference the data prior to the analysis. That is, if xt represents the data,
explain why we might choose to fit an ARMA model to ∇xt.

(e) Plot the ACF and PACF of ∇xt and comment.
(f) Fit an ARMA model to ∇xt and comment.

5.4 Compute the sample ACF of the absolute values of the NYSE returns
displayed in Figure 1.4 up to lag 200, and comment on whether the ACF indicates
long memory. Fit an ARFIMA model to the absolute values and comment.

5.5 Plot the global temperature series, globtemp, and then test whether there is a
unit root versus the alternative that the process is stationary using the three tests,
DF, ADF, and PP, discussed in Example 5.4. Comment.

5.6 Plot the GNP series, gnp, and then test for a unit root against the alternative
that the process is explosive. State your conclusion.

5.7 Verify (5.22).



Appendix R
R Supplement

R.1 First Things First

R is an open source programming language and software environment for
statistical computing and graphics that runs on most operating systems. It is an
interpreted language and is accessed through a command-line interpreter. A user
types a command, presses enter, and the answer is returned.

To obtain R, point your browser to the Comprehensive R Archive Network
(CRAN), http://cran.r-project.org/ and download and install it. The
installation includes help files and some user manuals. An internet search can
pull up various short tutorials and YouTube videos.

RStudio (https://www.rstudio.com/) can make using R much easier and we
recommend using it. It is a open source integrated development environment
(IDE) for R. It includes a console, syntax-highlighting editor that supports direct
code execution, as well as tools for plotting, history, debugging and workspace
management. This tutorial does not assume you are using RStudio; if you do use
it, a number of the command driven tasks can be accomplished by pointing and
clicking.

There are various simple exercises in this appendix that will help you get used
to using R. For example,
Exercise 1: Install R and RStudio (optional) now.
Solution: Follow the directions above.

R.2 Packages

At this point, you should have R (or RStudio) up and running. The capabilities of
R are extended through packages. R comes with a number of preloaded packages
that are available immediately. There are “base” packages that install with R and
load automatically. Then there are “priority” packages that are installed with R,
but not loaded automatically. Finally, there are user-created packages that must be
installed and loaded into R before use. If you are using RStudio, there is a
Packages tab to help you manage your packages.

http://cran.r-project.org/
https://www.rstudio.com/


R.3 Getting Help 165

Most packages can be obtained from CRAN and its mirrors. For example, in
Chapter 1, we will use the eXtensible Time Series package xts. To install xts,
start R and type
install.packages("xts")

If you are using RStudio, then use Install from the Packages tab. If asked to
choose a repository, select 0-Cloud, the first choice, and that will find your closest
repository. To use the package, you first load it by issuing the command
library(xts)

If you’re using RStudio, just click the box next to the package name.

R.2.1 Latest Version of ASTSA

The package for this course is called astsa. The latest version of the package will
not always be at CRAN, but will be available from GitHub. If you want to install
or update the package to the most recent version, you just need the following two
lines:
install.packages("devtools")
devtools::install_github("nickpoison/astsa")

Details about the updates and the current version of the package are on the astsa
news page.
Exercise 2: Install the most recent version of astsa.
Solution: Start R or RStudio, paste in the following two lines. Easy.
install.packages("devtools")
devtools::install_github("nickpoison/astsa") # reissue if you get an error

If you don’t use RStudio, you may want to create a .First function as follows,
.First <- function(){library(astsa)}

and save the workspace when you quit; astsa will be loaded at every start until
you change .First.

R.3 Getting Help

In RStudio, there is a Help tab. Otherwise, the R html help system can be started
by issuing the command
help.start()

The help files for installed packages can also be found there. Notice the
parentheses in all the commands above; they are necessary to run scripts. If you
simply type
help.start

nothing will happen and you will just see the commands that make up the script.
To get help for a particular command, say library, which we have already used,
do this:
help(library)
?library # same thing

And we state the obvious (well, not obvious to all):

If you can’t figure out how to do something, do an internet search.

https://github.com/nickpoison/astsa/blob/master/NEWS.md
https://github.com/nickpoison/astsa/blob/master/NEWS.md
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R.4 Basics
The convention throughout the text is that R code is in blue, output is purple and
comments are # green. Get comfortable, then start her up and try some simple
tasks.
2+2 # addition
[1] 5
5*5 + 2 # multiplication and addition
[1] 27
5/5 - 3 # division and subtraction
[1] -2
log(exp(pi)) # log, exponential, pi
[1] 3.141593
sin(pi/2) # sinusoids
[1] 1
exp(1)^(-2) # power
[1] 0.1353353
sqrt(8) # square root
[1] 2.828427
1:5 # sequences
[1] 1 2 3 4 5
seq(1, 10, by=2) # sequences
[1] 1 3 5 7 9
rep(2, 3) # repeat 2 three times
[1] 2 2 2

Exercise 3: Add 3 to 2 and multiply the result by 5.
Solution: The answer is not a teen.
2 + 3 * 5 # wrong
[1] 17
(2 + 3) * 5 # right
[1] 25

Exercise 4: Verify that 1/i = −i where i =
√
−1.

Solution: The complex number i is written as 1i in R.
1/1i
[1] 0-1i # complex numbers are displayed as a+bi

Exercise 5: Calculate i2.
Solution: Easy.
Exercise 6: Calculate cos(π/2).
Solution: You won’t get 0 exactly, but you will get machine precision 0. Here
you’ll see what it looks like.

Next, we’ll use assignment to make some vector objects:
x <- 1 + 2 # put 1 + 2 in object x
x = 1 + 2 # same as above with fewer keystrokes
1 + 2 -> x # same
x # view object x
[1] 3
(y = 9 * 3) # put 9 times 3 in y and view the result
[1] 27
(z = rnorm(5)) # put 5 standard normals into z and print z
[1] 0.96607946 1.98135811 -0.06064527 0.31028473 0.02046853

Vectors can be of various types, and they can be put together using c()
[concatenate or combine]; for example
x <- c(1, 2, 3) # numeric vector
y <- c("one","two","three") # character vector
z <- c(TRUE, TRUE, FALSE) # logical vector
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Missing values are represented by the symbol NA, ∞ by Inf and impossible
values are NaN. Here are some examples:
( x = c(0, 1, NA) )
[1] 0 1 NA
2*x
[1] 0 2 NA
is.na(x)
[1] FALSE FALSE TRUE
x/0
[1] NaN Inf NA

It is worth pointing out R’s recycling rule for doing arithmetic. Note the use of
the semicolon for multiple commands on one line.
x = c(1, 2, 3, 4); y = c(2, 4, 6, 8)
z = c(10, 20); w = c(8, 3, 2)
x * y # 1*2, 2*4, 3*6, 4*8
[1] 2 8 18 32
x + z # 1+10, 2+20, 3+10, 4+20
[1] 11 22 13 24
y + w # oops
[1] 10 7 8 16
Warning message:
In y + w : longer object length is not a multiple of
shorter object length

Exercise 7: Why was y+w above the vector (10, 7, 8, 16) and why is there a
warning?
Solution: To get started, y+w = (2+8, 4+3, ...) ...

The following commands are useful:
ls() # list all objects
"dummy" "mydata" "x" "y" "z"
ls(pattern = "my") # list every object that contains "my"
"dummy" "mydata"
rm(dummy) # remove object "dummy"
rm(list=ls()) # remove almost everything (use with caution)
data() # list of available data sets
help(ls) # specific help (?ls is the same)
getwd() # get working directory
setwd() # change working directory
q() # end the session (keep reading)

and a reference card may be found here:
https://cran.r-project.org/doc/contrib/Short-refcard.pdf.

When you quit, R will prompt you to save an image of your current
workspace. Answering yes will save the work you have done so far, and load it
when you next start R. We have never regretted selecting yes, but we have
regretted answering no.

If you want to keep your files separated for different projects, then having
to set the working directory each time you run R is a pain. If you use RStudio,
then you can easily create separate projects (from the menu File):
https://support.rstudio.com/hc/en-us/articles/200526207.

Otherwise, there are easy work-arounds, but it depends on your OS. In
Windows, copy the R or RStudio shortcut into the directory you want to use for
your project. Right click on the shortcut icon, select Properties, and remove the
text in the Start in: field; leave it blank and press OK. Then start R or RStudio
from that shortcut.

https://cran.r-project.org/doc/contrib/Short-refcard.pdf
https://support.rstudio.com/hc/en-us/articles/200526207
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Exercise 8: Create a directory that you will use for the course and use the tricks
previously mentioned to make it your working directory (or use the default if you
don’t care). Load astsa and use help to find out what’s in the data file cpg. Write
cpg as text to your working directory.
Solution: Assuming you started R in the working directory:
library(astsa)
help(cpg) # or ?cpg
Median ...

write(cpg, file="zzz.txt", ncolumns=1) # zzz so it's easy to find

Exercise 9: Find the file zzz.txt previously created (leave it there for now).
Solution: In RStudio, use the Files tab. Otherwise, go to your working directory:
getwd()
"C:/TimeSeries"

Now find the file and look at it; there should be 29 numbers in one column.

To create your own data set, you can make a data vector as follows:
mydata = c(1,2,3,2,1)

Now you have an object called mydata that contains five elements. R calls these
objects vectors even though they have no dimensions (no rows, no columns); they
do have order and length:
mydata # display the data
[1] 1 2 3 2 1
mydata[3] # the third element
[1] 3
mydata[3:5] # elements three through five
[1] 3 2 1
mydata[-(1:2)] # everything except the first two elements
[1] 3 2 1
length(mydata) # number of elements
[1] 5
dim(mydata) # no dimensions
NULL
mydata = as.matrix(mydata) # make it a matrix
dim(mydata) # now it has dimensions
[1] 5 1

If you have an external data set, you can use scan or read.table (or some
variant) to input the data. For example, suppose you have an ascii (text) data file
called dummy.txt in your working directory, and the file looks like this:
1 2 3 2 1

9 0 2 1 0

(dummy = scan("dummy.txt") ) # scan and view it
Read 10 items
[1] 1 2 3 2 1 9 0 2 1 0

(dummy = read.table("dummy.txt") ) # read and view it
V1 V2 V3 V4 V5
1 2 3 2 1
9 0 2 1 0

There is a difference between scan and read.table. The former produced a data
vector of 10 items while the latter produced a data frame with names V1 to V5 and
two observations per variate.
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Exercise 10: Scan and view the data in the file zzz.txt that you previously
created.
Solution: Hopefully it’s in your working directory:
(cost_per_gig = scan("zzz.txt") ) # read and view
Read 29 items
[1] 2.13e+05 2.95e+05 2.60e+05 1.75e+05 1.60e+05
[6] 7.10e+04 6.00e+04 3.00e+04 3.60e+04 9.00e+03
[11] 7.00e+03 4.00e+03 ...

When you use read.table or similar, you create a data frame. In this case, if
you want to list (or use) the second variate, V2, you would use
dummy$V2
[1] 2 0

and so on. You might want to look at the help files ?scan and ?read.table now.
Data frames (?data.frame) are “used as the fundamental data structure by most
of R’s modeling software.” Notice that R gave the columns of dummy generic
names, V1, ..., V5. You can provide your own names and then use the names to
access the data without the use of $ as above.
colnames(dummy) = c("Dog", "Cat", "Rat", "Pig", "Man")
attach(dummy) # this can cause problems; see ?attach
Cat
[1] 2 0
Rat*(Pig - Man) # animal arithmetic
[1] 3 2
head(dummy) # view the first few lines of a data file
detach(dummy) # clean up

R is case sensitive, thus cat and Cat are different. Also, cat is a reserved name
(?cat) in R, so using "cat" instead of "Cat" may cause problems later. It is noted
that attach can lead to confusion: The possibilities for creating errors when using
attach are numerous. Avoid. If you use it, it’s best to clean it up when you’re done.

You may also include a header in the data file to avoid colnames(). For
example, if you have a comma separated values file dummy.csv that looks like this,
Dog,Cat,Rat,Pig,Man

1,2,3,2,1

9,0,2,1,0

then use the following command to read the data.
(dummy = read.csv("dummy.csv"))

Dog Cat Rat Pig Man
1 1 2 3 2 1
2 9 0 2 1 0

The default for .csv files is header=TRUE; type ?read.table for further
information on similar types of files.

Two commands that are used frequently to manipulate data are cbind for
column binding and rbind for row binding. The following is an example.
x = runif(4) # generate 4 values from a uniform(0,1) into object x
y = runif(4) # generate 4 more and put them into object y
cbind(x,y) # column bind the two vectors (4 by 2 matrix)

x y
[1,] 0.6547304 0.7503984
[2,] 0.8222048 0.1335557
[3,] 0.4555755 0.2151735
[4,] 0.9843289 0.8483795
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rbind(x,y) # row bind the two vectors (2 by 4 matrix)
[,1] [,2] [,3] [,4]

x 0.6547304 0.8222048 0.4555755 0.9843289
y 0.7503984 0.1335557 0.2151735 0.8483795

Summary statistics are fairly easy to obtain. We will simulate 25 normals
with µ = 10 and σ = 4 and then perform some basic analyses. The first line of
the code is set.seed, which fixes the seed for the generation of pseudorandom
numbers. Using the same seed yields the same results; to expect anything else
would be insanity.
set.seed(90210) # so you can reproduce these results
x = rnorm(25, 10, 4) # generate the data
c( mean(x), median(x), var(x), sd(x) ) # guess
[1] 9.473883 9.448511 13.926701 3.731850
c( min(x), max(x) ) # smallest and largest values
[1] 2.678173 17.326089
which.max(x) # index of the max (x[25] in this case)
[1] 25
summary(x) # a five number summary with six numbers

Min. 1st Qu. Median Mean 3rd Qu. Max.
2.678 7.824 9.449 9.474 11.180 17.330

boxplot(x); hist(x); stem(x) # visual summaries (not shown)

Exercise 11: Generate 100 standard normals and draw a boxplot of the results.
Solution: You can do it all in one line.
boxplot(rnorm(100))

It can’t hurt to learn a little about programming in R because you will see
some of it along the way. First, let’s try a simple example of a function that
returns the reciprocal of a number:
oneover <- function(x){ 1/x }
oneover(0)
[1] Inf
oneover(-4)
[1] -0.25

Now consider a simple program that we will call crazy to produce a graph of
a sequence of sample means of increasing sample sizes from a standard Cauchy
distribution (the ratio of independent standard normals).
1 crazy <- function(num) {
2 x <- c()
3 for (n in 1:num) { x[n] <- mean(rcauchy(n)) }
4 plot(x, type="l", xlab="sample size", ylab="sample mean")
5 }

The first line creates the function crazy and gives it one argument, num, that is the
sample size that will end the sequence. Line 2 makes an empty vector, x, that will
be used to store the sample means. Line 3 generates n random Cauchy variates
[rcauchy(n)], finds the mean of those values, and puts the result into x[n], the
n-th value of x. The process is repeated in a “do loop” num times so that x[1] is
the sample mean from a sample of size one, x[2] is the sample mean from a
sample of size two, and so on, until finally, x[num] is the sample mean from a
sample of size num. After the do loop is complete, the fourth line generates a
graphic. The fifth line closes the function. To use crazy ending with sample of
size of 200, type
crazy(200)

and you will get a graphic that looks like Figure R.1.
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Fig. R.1. Crazy Cauchy example.

Exercise 12:Write a simple function to return the sum of two given numbers and
then use it to see if it works.
Solution: Fill in the blanks (avoid using reserved names such as sum):
___ <- function(x,y){ ___ + ___ }
# and then try it

Finally, a word of caution: TRUE and FALSE are reserved words, whereas T and
F are initially set to these. Get in the habit of using the words rather than the
letters T or F because you may get into trouble if you do something like T = 9 so
that T is no longer TRUE.

R.5 Regression and Time Series Primer

These topics run throughout the text, but we’ll give a brief introduction here.
The workhorse for regression in R is lm(). Suppose we want to fit a simple

linear regression, y = α + βx + ε. In R, the formula is written as y~x: We’ll
simulate our own data and do a simple example first.
set.seed(666) # fixes initial value of generation algorithm
x = rnorm(10) # generate 10 standard normals
y = 1 + 2*x + rnorm(10) # generate a simple linear model
summary(fit <- lm(y~x)) # fit the model - gets results
Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.0405 0.2594 4.012 0.00388
x 1.9611 0.1838 10.672 5.21e-06
---
Residual standard error: 0.8183 on 8 degrees of freedom
Multiple R-squared: 0.9344, Adjusted R-squared: 0.9262
F-statistic: 113.9 on 1 and 8 DF, p-value: 5.214e-06

plot(x, y) # scatterplot of generated data
abline(fit, col=4) # add fitted blue line to the plot

Note that we put the results of lm(y~x) into an object we called fit; this object
contains all of the information about the regression. Then we used summary to
display some of the results and used abline to plot the fitted line. The command
abline is useful for drawing horizontal and vertical lines also.
Exercise 13: Add red horizontal and vertical dashed lines to the previously
generated graph to show that the fitted line goes through the point (x̄, ȳ).
Solution: Add the following two lines to the above graph:
abline(h=mean(y), col=2, lty=2) # color 2 is ’red’ and lty 2 is ’dashed’
abline( ?? ) # your turn
# now use the graphical device to save your graph; see Figure R.2.
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Fig. R.2. Full plot for Exercise 13.

All sorts of information can be extracted from the lm object, which we called
fit. For example,
plot(resid(fit)) # will plot the residuals (not shown)
fitted(fit) # will display the fitted values (not shown)

We’ll get back to regression later after we focus a little on time series. To
create a time series object, use the command ts. Related commands are as.ts to
coerce an object to a time series and is.ts to test whether an object is a time
series. First, make a small data set:
(mydata = c(1,2,3,2,1) ) # make it and view it
[1] 1 2 3 2 1

Make it an annual time series that starts in 1990:
(mydata = ts(mydata, start=1990) )
Time Series:
Start = 1990
End = 1994
Frequency = 1
[1] 1 2 3 2 1

Now make it a quarterly time series that starts in 1990-III:
(mydata = ts(mydata, start=c(1990,3), frequency=4) )

Qtr1 Qtr2 Qtr3 Qtr4
1990 1 2
1991 3 2 1

time(mydata) # view the sampled times
Qtr1 Qtr2 Qtr3 Qtr4

1990 1990.50 1990.75
1991 1991.00 1991.25 1991.50

To use part of a time series object, use window():
(x = window(mydata, start=c(1991,1), end=c(1991,3) ))

Qtr1 Qtr2 Qtr3
1991 3 2 1

Next, we’ll look at lagging and differencing, which are fundamental
transformations used frequently in the analysis of time series. For example, if I’m
interested in predicting todays from yesterdays, I would look at the relationship
between xt and its lag, xt−1.
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First make a simple series, xt:
x = ts(1:5)

Now, column bind (cbind) lagged values of xt and you will notice that lag(x) is
forward lag, whereas lag(x, -1) is backward lag.
cbind(x, lag(x), lag(x,-1))

x lag(x) lag(x, -1)
0 NA 1 NA
1 1 2 NA
2 2 3 1
3 3 4 2 <- in this row, for example, x is 3,
4 4 5 3 lag(x) is ahead at 4, and
5 5 NA 4 lag(x,-1) is behind at 2
6 NA NA 5

Compare cbind and ts.intersect:
ts.intersect(x, lag(x,1), lag(x,-1))
Time Series: Start = 2 End = 4 Frequency = 1

x lag(x, 1) lag(x, -1)
2 2 3 1
3 3 4 2
4 4 5 3

For discrete-time series, finite differences are used like differentials. To difference
a series, ∇xt = xt − xt−1, use
diff(x)

but note that
diff(x, 2)

is xt − xt−2 and not second order differencing. For second order differencing,
that is, ∇2xt = ∇(∇xt), do one of these:
diff(diff(x))
diff(x, diff=2) # same thing

and so on for higher order differencing.
You have to be careful if you use lm() for lagged values of a time series. If

you use lm(), then what you have to do is align the series using ts.intersect.
Please read the warning Using time series in the lm() help file [help(lm)]. Here
is an example regressing astsa data, weekly cardiovascular mortality (cmort) on
particulate pollution (part) at the present value and lagged four weeks (part4).
First, we create ded, which consists of the intersection of the three series:
ded = ts.intersect(cmort, part, part4=lag(part,-4))

Now the series are all aligned and the regression will work.
summary(fit <- lm(cmort~part+part4, data=ded, na.action=NULL) )
Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 69.01020 1.37498 50.190 < 2e-16
part 0.15140 0.02898 5.225 2.56e-07
part4 0.26297 0.02899 9.071 < 2e-16
---
Residual standard error: 8.323 on 501 degrees of freedom
Multiple R-squared: 0.3091, Adjusted R-squared: 0.3063
F-statistic: 112.1 on 2 and 501 DF, p-value: < 2.2e-16

There was no need to rename lag(part,-4) to part4, it’s just an example of what
you can do. Also, na.action=NULL is necessary to retain the time series
attributes. It should be there whenever you do time series regression.



174 Appendix R: R Supplement

Exercise 14: Generate 10 standard normals and put them into object y. Put the
backward lagged values in x. Do a scatterplot of the two and then plot the
regression line of y on x. This is what happens when you don’t align the series
first.
Solution: Fill in the blanks:
y = rnorm(10)
x = lag(___, ___)
plot(y~ x)
abline( lm( ___ ~ ___) )

In Problem 2.1, you are asked to fit a regression model

xt = βt + α1Q1(t) + α2Q2(t) + α3Q3(t) + α4Q4(t) + wt

where xt is logged Johnson & Johnson quarterly earnings (n = 84), and Qi(t) is
the indicator of quarter i = 1, 2, 3, 4. The indicators can be made using factor.
trend = time(jj) - 1970 # helps to `center' time
Q = factor(cycle(jj) ) # make (Q)uarter factors
reg = lm(log(jj)~ 0 + trend + Q, na.action=NULL) # no intercept
model.matrix(reg) # view the model design matrix

trend Q1 Q2 Q3 Q4
1 -10.00 1 0 0 0
2 -9.75 0 1 0 0
3 -9.50 0 0 1 0
. . . . . .
. . . . . .

summary(reg) # view the results (not shown)

R.6 Graphics

We introduced some graphics without saying much about it. There are various
packages available for producing fabulous graphics, but for quick and easy
graphing of time series, the R base graphics does fine wit a little help from
tsplot, which is available in the astsa package. As seen in Chapter 1, a time
series may be plotted in a few lines, such as
tsplot(globtemp)

in Example 1.2, or the multifigure plot
plot.ts( cbind(soi, rec) )

which we made little fancier in Example 1.4:
par(mfrow = c(2,1)) # ?par for details
tsplot(soi, ylab='', xlab='', main='Southern Oscillation Index')
tsplot(rec, ylab='', xlab='', main='Recruitment')

If you are using a word processor and you want to be able to paste the graphic
in the document, then you can print directly to a png by replacing line 1 with
something like
png(file="globtemp.png", width=480, height=360) # default is 480 x 480 px

but you have to turn the device off to complete the file save:
dev.off()

In RStudio, simply use the Export tab under Plots.
For plotting many time series, plot.ts and ts.plot are also available using

R base graphics. If the series are all on the same scale, it might be useful to do the
following:
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Fig. R.3. The sunspot numbers plotted in different-sized boxes, demonstrating that the dimensions of
the graphic matters when displaying time series data.

ts.plot(cmort, tempr, part, col=2:4)
legend('topright', legend=c('M','T','P'), lty=1, col=2:4)

This produces a plot of all three series on the same axes with different colors, and
then adds a legend. We are not restricted to using basic colors; an internet search
on ‘R colors’ is helpful. The following code gives separate plots of each different
series (with a limit of 10):
plot.ts(cbind(cmort, tempr, part) )
plot.ts(eqexp) # you will get a warning
plot.ts(eqexp[,9:16], main='Explosions') # but this works

Finally, we mention that size matters when plotting time series. Figure R.3
shows the sunspot numbers discussed in Problem 4.6 plotted with varying
dimension size as follows.
dev.new(height=8.75)
layout(matrix(1:2), height=c(.2,.8))
par(mar=c(.2,3.5,0,.5), oma=c(3.5,0,.5,0), mgp=c(2,.6,0))
plot(sunspotz, type='n', xaxt='no', ylab='')
grid(lty=1, col=gray(.9))
lines(sunspotz)
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plot(sunspotz, type='n', ylab='')
grid(lty=1, col=gray(.9))
lines(sunspotz)

title(xlab="Time", outer=TRUE, cex.lab=1.2)
mtext(side=2, "Sunspot Numbers", line=2, adj=.75)

The result is shown in Figure R.3. The top plot is wide and narrow, revealing the
fact that the series rises quickly ↑ and falls slowly↘ . The bottom plot, which is
more square, obscures this fact. You will notice that in the main part of the text,
we never plotted a series in a square box. The ideal shape for plotting time series,
in most instances, is when the time axis is much wider than the value axis.

Exercise 15: There is an R data set called lynx that is the annual numbers of lynx
trappings for 1821–1934 in Canada. The data are typical of predator-prey series.
Produce two graphs in a multifigure plot, one of the sunspot numbers, and one of
the lynx series. What attribute does the lynx plot reveal?
Solution: We’ll get you started. Are the data doing this: ↑↘ as the sunspot
numbers, or is are they doing this:↗↓?
par(mfrow=c(2,1))
tsplot(sunspotz)
tsplot( ___ )

Note: Any resizing command such as dev.new(height=8.75) does not work with
RStudio. Their official statement is:

Unfortunately there’s no way to explicitly set the plot pane size itself
right now - however, you can explicitly set the size of a plot you’re saving
using the Export Plot feature of the Plots pane. Choose Save Plot as PDF
or Image and it will give you an option to set the size of the plot by pixel
or inch size.

Because size matters when plotting time series, producing graphs interactively in
RStudio can be a bit of a pain.



Index

ACF, 17, 19
large sample distribution, 24
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Backcasting, 82
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Bandwidth, 128
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m-step-ahead prediction, 80
mean square prediction error, 80

one-step-ahead prediction, 78
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large sample distribution, 26
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Cepstral analysis, 152
Chicken prices, 41
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Cross-correlation function, see CCF
Cross-covariance function, 18
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Cross-spectrum, 144
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Folding frequency, 113, 116
Fourier frequency, 116, 122
Fractional difference, 163

fractional noise, 163
Frequency bands, 119, 127
Frequency response function, 141

of a first difference filter, 142
of a moving average filter, 142

Functional magnetic resonance imaging
series, 9

Fundamental frequency, 115, 116, 122

Glacial varve series, 45, 75, 95, 165, 172
Global temperature series, 6, 44
Growth rate, 90, 155

Harmonics, 131

Impulse response function, 141
Innovations, 93

standardized, 93
Integrated models, 86, 88, 103

forecasting, 87
Invertible, 62

Johnson & Johnson quarterly earnings
series, 5

LA Pollution – Mortality Study, 37, 53, 98
Lag, 17, 22
Lead, 22
Leakage, 137

sidelobe, 137
license, 1
Likelihood

AR(1) model, 84
conditional, 85

Linear filter, see Filter
Ljung–Box–Pierce statistic, 93
Long memory, 163

estimation, 165
estimation of d, 169
spectral density, 168

LSE
conditional sum of squares, 85
Gauss–Newton, 73
unconditional, 84

MA model, 11, 58
autocovariance function, 16, 65
Gauss–Newton, 74
mean function, 14
spectral density, 120

Mean function, 14
Method of moments estimators, see

Yule–Walker
MLE

conditional likelihood, 85

Ordinary Least Squares, 32

PACF, 69
of an MA(1), 70
iterative solution, 79
large sample results, 69
of an AR(p), 69
of an MA(q), 70

Parameter redundancy, 61
Partial autocorrelation function, see PACF
Period, 112
Periodogram, 116, 122

disribution, 124
Phase, 112
Prewhiten, 27

Quadspectrum, 145

Random sum of sines and cosines, 113
Random walk, 12, 15, 87

autocovariance function, 17
Recruitment series, 8, 26, 46, 70, 82, 125,

129, 135, 148
Regression

ANOVA table, 35
autocorrelated errors, 97
Cochrane-Orcutt procedure, 98
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model, 32
multiple correlation, 35
normal equations, 33

Return, 7, 90, 155, 156
log-, 156

Scatterplot matrix, 38, 46
Scatterplot smoothers

kernel, 52
lowess, 52, 53
nearest neighbors, 52

SIC, 36
Signal plus noise, 13

mean function, 15
Signal-to-noise ratio, 14
Southern Oscillation Index, 8, 26, 46, 125,

129, 135, 137, 139, 142, 148
Spectral density, 118

autoregression, 138
estimation, 127
adjusted degrees of freedom, 128
bandwidth stability, 132
confidence interval, 128
degrees of freedom, 128
large sample distribution, 128
nonparametric, 138
parametric, 138
resolution, 132

matrix, 146
of a filtered series, 141
of a moving average, 120
of an AR(2), 120
of white noise, 119

Spectral Representation Theorem, 118
vector process, 146

Stationary
jointly, 21
strictly, 18
weakly, 18

Stochastic trend, 86
Structural model, 54

Taper, 135, 137
cosine bell, 136

Transformation
Box-Cox, 44

Trend stationarity, 20

U.S. GNP series, 90, 94, 96, 158
U.S. population series, 96
Unit root tests, 171

Augmented Dickey-Fuller test, 172
Dickey-Fuller test, 171
Phillips-Perron test, 172

Varve series, 169
Volatility, 7, 155

White noise, 10
autocovariance function, 16
Gaussian, 10

Yule–Walker
equations, 72
estimators, 72
AR(2), 72
MA(1), 73


	Time Series Characteristics
	Introduction
	Some Time Series Data
	Time Series Models
	Measures of Dependence  
	Stationary Time Series
	Estimation of Correlation
	Problems

	Time Series Regression and EDA
	Classical Regression for Time Series 
	Exploratory Data Analysis
	Smoothing Time Series 
	Problems

	ARIMA Models
	Introduction 
	Autoregressive Moving Average Models
	Autocorrelation and Partial Autocorrelation
	Estimation
	Least Squares Estimation

	Forecasting 
	Maximum Likelihood Estimation ** 
	Integrated Models 
	Building ARIMA Models 
	Regression with Autocorrelated Errors 
	 Seasonal ARIMA Models
	Problems

	Spectral Analysis and Filtering
	Introduction
	Periodicity and Cyclical Behavior 
	The Spectral Density
	Periodogram and Discrete Fourier Transform 
	Nonparametric Spectral Estimation
	Parametric Spectral Estimation
	Linear Filters
	Multiple Series and Cross-Spectra
	Problems

	Some Additional Topics **
	GARCH Models 
	Unit Root Testing
	Long Memory and Fractional Differencing 
	Problems

	Appendix R Supplement
	First Things First
	Packages
	Latest Version of ASTSA

	Getting Help
	Basics
	Regression and Time Series Primer
	Graphics

	Index

